Extracted from:

Modern Perl, Fourth Edition

This PDF file contains pages extracted from Modern Perl, Fourth Edition, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Th
Pr ematic
Ograimmers

Modern Perl

Fourth Edition

chromatic

The Classic Reference, Updated for Perl 5.22

Modern Perl, Fourth Edition

chromatic

The Pragmatic Bookshelf

Dallas, Texas « Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (index)
Linda Recktenwald (copyedit)
Dave Thomas (layout)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-088-2

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2015

https://pragprog.com
rights@pragprog.com

CHAPTER 8

Style and Efficacy

To program well, we must find the balance between getting the job done on
time and doing the job right. We must balance time, resources, and quality.
Programs have bugs. Programs need maintenance and expansion. Programs
have multiple programmers. A beautiful program that never delivers value is
worthless, but an awful program that cannot be maintained is a risk waiting
to happen.

Skilled programmers understand their constraints and write the right code.

To write Perl well, you must understand the language. You must also cultivate
a sense of good taste for the language and the design of programs. The only
way to do so is to practice—not just writing code but maintaining and reading
good code.

This path has no shortcuts, but it does have guideposts.

Writing Maintainable Perl

Maintainability is the nebulous measurement of how easy it is to understand
and modify a program. Write some code. Come back to it in six months (or
six days). How long does it take you to find and fix a bug or add a feature?
That’s maintainability.

Maintainability doesn’t measure whether you have to look up the syntax for
a built-in or a library function. It doesn’'t measure how someone who has
never programmed before will or won't read your code. Assume you're talking
to a competent programmer who understands the problem you're trying to
solve. How much work does she have to put in to understand your code?
What problems will she face in doing so?

To write maintainable software, you need experience solving real problems,
an understanding of the idioms and techniques and style of your programming

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

°6

language, and good taste. You can develop all of these by concentrating on a
few principles:

* Remove duplication. Bugs lurk in sections of repeated and similar
code—when you fixed a bug in one piece of code, did you fix it in others?
When you updated one section, did you update the others?

Well-designed systems have little duplication. They use functions, modules,
objects, and roles to extract duplicate code into distinct components that
accurately model the domain of the problem. The best designs sometimes
allow you to add features by removing code.

e Name entities well. Your code tells a story. Every name you choose for a
variable, function, module, class, and role allows you to clarify or obfuscate
your intent. Choose your names carefully. If youre having trouble
choosing good names, you may need to rethink your design or study your
problem in more detail.

e Avoid unnecessary cleverness. Concise code is good when it reveals the
intention of the code. Clever code hides your intent behind flashy tricks.
Perl allows you to write the right code at the right time. Choose the most
obvious solution when possible. Experience and good taste will guide you.

Some problems require clever solutions. When this happens, encapsulate
this code behind a simple interface and document your cleverness.

e Embrace simplicity. If everything else is equal, a simpler program is easier
to maintain than a complex program. Simplicity means knowing what'’s
most important and doing just that.

Sometimes you need powerful, robust code. Sometimes you need a one-liner.
Simplicity means building only what you need. This is no excuse to avoid
error checking or modularity or validation or security. Simple code can use
advanced features. Simple code can use CPAN modules—and many of them.
Simple code may require work to understand. Yet simple code solves problems
effectively, without unnecessary work.

Writing Idiomatic Perl

Perl borrows liberally from other languages. Perl lets you write the code you
want to write. C programmers often write C-style Perl, just as Java program-
mers write Java-style Perl and Lisp programmers write Lispy Perl. Effective
Perl programmers write Perlish Perl by embracing the language’s idioms:

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

Writing Effective Perl ® 7

* Understand community wisdom. Perl programmers often debate techniques
and idioms fiercely. Perl programmers also often share their work, and
not just on the CPAN. Pay attention; there’s not always one and only one
best way to do things. The interesting discussions happen about the trade-
offs between various ideals and styles.

e Follow community norms. Perl is a community of toolsmiths who solve
broad problems, including static code analysis (Perl::Critic), reformatting
(Perl::Tidy), and private distribution systems (CPAN::Mini, Carton, Pinto). Take
advantage of the CPAN infrastructure; follow the CPAN model of writing,
documenting, packaging, testing, and distributing your code.

code and try to answer questions—even if you never post your answers,
writing code to solve one problem every workday will teach you an enor-
mous amount very quickly.

CPAN developers, Perl mongers, and mailing list participants have hard-won
experience solving problems in myriad ways. Talk to them. Read their code.
Ask questions. Learn from them and let them guide—and learn from—you.

Writing Effective Perl

Writing maintainable code means designing maintainable code. Good design
comes from good habits:

» Write testable code. Writing an effective test suite (Testing on page ?)
exercises the same design skills as writing effective code. Code is code.
Good tests also give you the confidence to modify a program while keeping

it running correctly.

* Modularize. Enforce encapsulation and abstraction boundaries. Find the
right interfaces between components. Name things well and put them
where they belong. Modularity forces you to think about similarities and
differences and points of communication where your design fits together.
Find the pieces that don't fit well. Revise your design until they do fit.

e Follow sensible coding standards. Effective guidelines discuss error han-
dling, security, encapsulation, API design, project layout, and other facets
of maintainable code. Excellent guidelines help developers communicate
with each other with code. If you look at a new project and find nothing

1. http://www.perl.org/community.html

« Click HERE to purchase this book now. discuss

http://learn.perl.org/faq/beginners.html
http://learn.perl.org/faq/beginners.html
http://www.perl.org/community.html
http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

°8

surprises you, that’s great! Your job is to solve problems with code. Let
your code—and the infrastructure around it—speak clearly.

e Exploit the CPAN. Perl programmers solve problems and then share those
solutions. The CPAN is a force multiplier; search it first for a solution or
partial solution to your problem. Invest time in research to find full or
partial solutions you can reuse. It will pay off.

If you find a bug, report it. Patch it, if possible. Submit a failing test case. Fix
a typo. Ask for a feature. Say “Thank you!” Then, when you're ready—when
you create something new or fix something old in a reusable way—share your
code.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

