Extracted from:

Modern CSS with Tailwind

Flexible Styling Without the Fuss

This PDF file contains pages extracted from Modern CSS with Tailwind, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina


http://www.pragprog.com

P}h%%ggr%%uners
Modern CSS

with Tailwind
Flexible Styling Without the Fuss A

snewibeid -

Noel Rappin
edited by Katharine Dvorak






Modern CSS with Tailwind

Flexible Styling Without the Fuss

Noel Rappin

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin

COO: Janet Furlow

Managing Editor: Tammy Coron
Development Editor: Katharine Dvorak
Copy Editor: Corina Lebegioara

Layout: Gilson Graphics

Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-818-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—May 2021


https://pragprog.com
support@pragprog.com
rights@pragprog.com

Transitions

In CSS, you can specify that one or more properties should gradually transition
when they change values, rather than changing instantly. In a full client-side
application, you might change values by using JavaScript to modify the CSS
classes on an element. In Tailwind, you can use the prefixes to manage some
CSS property changes merely in CSS. For example, an element with a class
list of "bg-green-500 hover:bg-yellow-500" will change color from green to yellow when
the user hovers over it, and the Tailwind transition utilities can make that
happen gradually.

In most cases, you'd declare an element to have a class of .transition, which
causes the element to use transition effects for the CSS properties, background-
color, border-color, box-shadow, color, fill, opacity, stroke, and transform. Often that’s all
the properties you want to transition, but if you need to transition other
properties, you can use .transition-all to place all properties under the transition
banner.

If you want to limit the transition to certain properties, Tailwind provides
several choices. Typically you would use these because there are changes in
other properties that you want to happen instantly.

.transition-color
.transition-opacity
.transition-shadow

transition-transform

For the transition to actually be visible, you need to specify a duration over
which the transition will take place. The default is O (but can be changed in
the Tailwind configuration), and Tailwind provides the .duration-{milliseconds}
family of utilities, where the suffix is one of 75, 100, 150, 200, 300, 500, 700,
or 1000, indicating the number of milliseconds the transition should cover.

You can also delay the start of the transition with .delay-{milliseconds} and the
same set of numbers, indicating the number of milliseconds before the tran-
sition should start.

By default, the transition is applied linearly, meaning the change to the
property happens in a series of identically-sized steps. That default is denoted
by the Tailwind utility, .ease-linear. If you want the property change to start
more slowly, speed up, and then slow down as it gets closer to the end, you
can use .ease-in-out. (Or, you can use either .ease-in or .ease-out if you only want
the slowdown on one side of the change.) The ease difference is subtle, but

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/tailwind
http://forums.pragprog.com/forums/tailwind

°6

especially with motion, it can provide a sense of a change accelerating and
then decelerating in a way that can look more natural and engaging.

Transformation

CSS allows you to transform the box of an element in various ways, changing
its size, location, rotation, or skew. Tailwind again gives you some reasonable
defaults, which when combined with transitions and animation can allow
you to build some great effects easily.

All of these transformation utilities need to be combined with .transform, which
in turn needs to be declared as a class in the same element, as in "transform
scale-100".

Changing the Scale

Tailwind lets you change the scale of an element with the .scale-{percentage}
family, where the suffix is the percentage to scale. The options are 0O, 50, 75,
90, 95, 100, 105, 110, 125, and 150, which are, I think, designed to allow
for subtle effects like "transform transition duration-1000 hover:scale-110" (which would
make an element get slightly bigger on hover over the course of a second).
Add in hover:box-shadow-lg, and it'd seem like the element was getting closer to
the user on hover.

If you only want to scale in one direction, you can use .scale-x-{percentage} or .scale-
y-{percentage} with the same set of numbers (scale-x-95, scale-y-125, and so on).

Rotating

You can rotate an element with .rotate-{degrees}, which is a clockwise transfor-
mation of a number of degrees. The options are O, 1, 2, 3, 6, 12, 45, 90, and
180. A counter-clockwise rotation is achieved with .-rotate-{degrees} and the
same numbers.

Again, the design here is to make it easy for small effects. The rotation is, by
default, around an axis in the middle of the element, which Tailwind denotes
as .origin-center. You can move the origin around by adding the suffixes for the
same four directions and four corners that you've seen elsewhere to .origin-
(for example, .origin-top, .origin-bottom-right, and so on).

Skew and Translate

For skew, you have .skew-x-{degrees}, .-skew-x-{degrees}, .skew-y-{degrees}, and .-skew-
y-{degrees}, which take the numerical suffixes 0, 1, 2, 3, 6, or 12, as the
number of degrees in the skew.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/tailwind
http://forums.pragprog.com/forums/tailwind

Transformation ® 7

You can flat out move an element with .translate-x-{size}, .-translate-x-{size}, .translate-
y-{size}, or .-translate-y-{size}, each of which takes a numerical suffix. This moves
the element along the direction using the same number scale you've seen for
padding, margins, and thelike, where each numberrepresents 0.25rem. Positive
directions are right and down, and negative directions are left and up.

In addition to the number set, you have as suffixes px for a single pixel, full
for “move this the exact amount of its size in that dimension,” and 1/2 for
“move it half the amount of its size in that dimension,” as in translate-x-full or
translate-y-1/2.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/tailwind
http://forums.pragprog.com/forums/tailwind

