
Extracted from:

Async JavaScript
Build More Responsive Apps with Less Code

This PDF file contains pages extracted from Async JavaScript, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Async JavaScript
Build More Responsive Apps with Less Code

Trevor Burnham

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-27-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2012

http://pragprog.com

Introduction
Originally devised to enhance web pages in Netscape 2.0, JavaScript is now
faced with being a single-threaded language in a multimedia, multitasking,
multicore world. Yet JavaScript has not only persevered since 1995, it’s
thrived. One after the other, potential rivals in the browser—Flash, Silverlight,
and Java applets, to name a few—have come and (more or less) gone.

Meanwhile, when a programmer named Ryan Dahl wanted to build a new
framework for event-driven servers, he searched the far reaches of computer
science for a language that was both dynamic and single-threaded before
realizing that the answer was right in front of him. And so, Node.js was born,
and JavaScript became a force to be reckoned with in the server world.

How did this happen? As recently as 2001, Paul Graham wrote the following
in his essay “The Other Road Ahead”:1

I would not even use JavaScript, if I were you… Most of the JavaScript I see on
the Web isn’t necessary, and much of it breaks.

Today, Graham is the lead partner at Y Combinator, the investment group
behind Dropbox, Heroku, and hundreds of other start-ups—nearly all of which
use JavaScript. As he put it in a revised version of the essay, “JavaScript now
works.”

When did JavaScript become a respectable language? Some say the turning
point was Gmail (2004), which showed the world that with a heavy dose of
Ajax you could run a first-class email client in the browser. Others say that
it was jQuery (2006), which abstracted the rival browser APIs of the time to
create a de facto standard. (As of 2011, 48 percent of the top 17,000 websites
use jQuery.2)

1. A revised version of this essay can be found at http://paulgraham.com/road.html. The original
footnote can be found in the book Hackers & Painters.

2. http://appendto.com/jquery-overtakes-flash

• Click HERE to purchase this book now. discuss

http://paulgraham.com/road.html
http://appendto.com/jquery-overtakes-flash
http://pragprog.com/titles/tbajs
http://forums.pragprog.com/forums/tbajs

Whatever the reason, JavaScript is here to stay. Apple got behind JavaScript
with WebKit and Safari. Microsoft is getting behind JavaScript with Metro.
Even Adobe is getting behind JavaScript with tools to generate HTML5 instead
of Flash. What began as a humble browser feature has become arguably the
most important programming language in the world.

Thanks to the ubiquity of web browsers, JavaScript has come closer than
any other language to fulfilling Java’s old promise of “write once, run any-
where.” In 2007, Jeff Atwood coined Atwood’s law:

Any application that can be written in JavaScript will eventually be written in
JavaScript.3

Trouble in Paradise

JavaScript was conceived to be a single-threaded language where asyn-
chronous tasks are handled with events. When there are only a few potential
events, event-based code is much simpler than multithreaded code. It’s con-
ceptually elegant, and it eliminates the need to wrap up data in mutexes and
semaphores to make it thread-safe. But when a number of events are
expected, with state that needs to be carried from one event to the next, that
simplicity often gives way to a code structure so terrifying that it’s been dubbed
the Pyramid of Doom.

step1(function(result1) {
step2(function(result2) {

step3(function(result3) {
// and so on...

});
});

});

“I love async, but I can’t code like this,” one developer famously complained
on the Node.js Google Group.4 But the problem isn’t with the language itself;
it’s with the way programmers use the language. Dealing with complex sets
of events in an elegant way is still frontier territory in JavaScript.

So, let’s push the frontier forward! Let’s prove to the world that even the most
complex problems can be tackled with clean, maintainable JavaScript code.

3. http://www.codinghorror.com/blog/2007/07/the-principle-of-least-power.html
4. https://groups.google.com/forum/#!topic/nodejs/wzSUdkPICWg

Introduction • viii

• Click HERE to purchase this book now. discuss

http://www.codinghorror.com/blog/2007/07/the-principle-of-least-power.html
https://groups.google.com/forum/#!topic/nodejs/wzSUdkPICWg
http://pragprog.com/titles/tbajs
http://forums.pragprog.com/forums/tbajs

Who Is This Book For?

This book is aimed at intermediate JavaScripters. You should know how
variables are scoped. Keywords like typeof, arguments, and this shouldn’t faze
you. Perhaps most importantly, you should understand that

func(function(arg) { return next(arg); });

is just a needlessly verbose way of writing

func(next);

except in rare cases. (See Reg Braithwaite’s excellent article “Captain Obvious
on JavaScript” for more examples of small but important functional idioms.)5

What you don’t need to know is how asynchronous events are scheduled in
JavaScript. We’ll cover that in the next chapter.

Resources for Learning JavaScript

As JavaScript has become the lingua franca of the Web (not to mention mobile
devices), a vast number of informative books, courses, and sites devoted to
it have appeared. Here are a few that I recommend:

• If you’re new to programming altogether, check out the interactive tutorial
site Codecademy.6

• If you’re coming from another language and want to get up and running
with JavaScript as a language for scripting the browser, take the interac-
tive jQuery Air courses on CodeSchool.7

• If you want a more formal introduction to the JavaScript language, absorb
Marijn Haverbeke’s Eloquent JavaScript.8

• If you’re a JavaScript beginner who wants to level up and avoid common
pitfalls, spend some time in the JavaScript Garden.9

Where to Turn for Help?

When pondering questions like “Should I use typeof or instanceof here?” steer
clear of the dated W3Schools site (which, regrettably, tends to be favored by
Google searches). Instead, head to the Mozilla Developer Network (MDN).10

5. https://github.com/raganwald/homoiconic/blob/master/2012/01/captain-obvious-on-javascript.md
6. http://www.codecademy.com/
7. http://www.codeschool.com/
8. http://eloquentjavascript.net/
9. http://javascriptgarden.info/
10. https://developer.mozilla.org/

• Click HERE to purchase this book now. discuss

Who Is This Book For? • ix

https://github.com/raganwald/homoiconic/blob/master/2012/01/captain-obvious-on-javascript.md
http://www.codecademy.com/
http://www.codeschool.com/
http://eloquentjavascript.net/
http://javascriptgarden.info/
https://developer.mozilla.org/
http://pragprog.com/titles/tbajs
http://forums.pragprog.com/forums/tbajs

The Mozilla Foundation (you may have heard of its browser, Firefox) is headed
up by Brendan Eich, the creator of JavaScript. The foundation knows its
stuff.

If you can’t find your answer among MDN’s pages, take your question to Stack
Overflow.11 The site has fostered an amazingly helpful developer community,
and it’s a safe bet that any coherent question tagged JavaScript will receive a
punctual response.

Running the Code Examples

This book is a bit unusual, in that I discuss both client-side (browser) and
server-side (Node.js) code. That reflects the uniquely portable nature of
JavaScript. The central concepts apply to all JavaScript environments, but
certain examples are aimed at one or the other.

Even if you have no interest in writing Node applications, I hope you’ll follow
along by running these code snippets locally. See Running Code in Node.js,
on page x for directions.

Which Examples Are Runnable?

When you see a code snippet with a filename, that means it’s self-contained
and can be run without modification. Here’s an example:

Preface/stringConstructor.js
console.log('str'.constructor.name);

The surrounding context should make it clear whether the code is runnable
in the browser, in Node.js, or in both.

When a code snippet doesn’t have a filename, that means it’s not self-con-
tained. It may be part of a larger example, or it may be a hypothetical. Here’s
an example:

var tenSeconds = 10 * 1e3;
setTimeout(launchSatellite, tenSeconds);

These examples are meant to be read, not run.

Running Code in Node.js

Node is very easy to install and use: just head to http://nodejs.org/, click Download,
and run the Windows or OS X installer (or build from source on *nix). You
can then run node from the command line to open a JavaScript REPL (analo-
gous to Ruby’s irb environment).

11. http://stackoverflow.com/

Introduction • x

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/tbajs/code/Preface/stringConstructor.js
http://nodejs.org/
http://stackoverflow.com/
http://pragprog.com/titles/tbajs
http://forums.pragprog.com/forums/tbajs

$ node
> Math.pow(5, 6)
15625

You can run a JavaScript file by giving its name as an argument to the node
command.

$ echo "console.log(typeof NaN)" > foo.js
$ node foo.js
number

Running Code in the Browser

Every modern browser provides a nice little REPL that lets you run JavaScript
code in the context of the current page. But for playing with multiline code
examples, you’re better off using a web sandbox like jsFiddle.12

With jsFiddle, you can enter JavaScript, HTML, and CSS, and then click Run
(or press Ctrl+Enter) to see the result. (console output will go to your developer
console.) You can bring in a framework like jQuery by choosing it in the left
sidebar. And you can save your work, giving you a shareable URL.

Code Style in This Book

JavaScript has no official style guide, but maintaining a consistent style
within a project is important. For this book, I’ve adopted the following (very
common) conventions:

• Two-space indentation
• camelCase identifiers
• Semicolons at the end of every expression, except function definitions

More esoterically, I’ve adopted a special convention for indentation in a chain
of function calls, based on a proposal by Reg Braithwaite. The rule is, essen-
tially, that two function calls in a chain have the same indentation level if
and only if they return the same object. So, for instance, I might write the
following:

$('#container > ul li.inactive')
.slideUp();

jQuery’s slideUp method returns the same object that it was called on. Thus,
it isn’t indented. By contrast:

var $paragraphClone = $('p:last')
.clone();

12. http://jsfiddle.net/

• Click HERE to purchase this book now. discuss

Code Style in This Book • xi

http://jsfiddle.net/
http://pragprog.com/titles/tbajs
http://forums.pragprog.com/forums/tbajs

Here, the clone method is indented because it returns a different object.

The advantage of this convention is that it clarifies what each function in a
chain is returning. Here’s a more complex example:

$('h1')
.first()
.addClass('first')

.end()
.last()
.addClass('last');

jQuery’s first and last filter a set down to its first and last elements, while end
undoes the last filter. So, end is unindented because it returns the same value
as $('h1'). (last is allowed to occupy the same indentation level as first because
the chain was reset.)

This approach to indentation is especially useful when we’re doing functional
programming, as we’ll see in Chapter 4, Flow Control with Async.js, on page
?.

[1, 2, 3, 4, 5]
.filter(function(int) { return int % 2 === 1; })

.forEach(function(odd) { console.log(odd); })

A Word on altJS

A number of languages compile to JavaScript, making code easier to write.
(You can find a fairly comprehensive list at http://altjs.org.) This book isn’t about
them. It’s about writing the best JavaScript code we can without the use of
a precompiler. I have nothing against altJS (see the next section), but I believe
it’s important to understand the underlying language.

Some altJS languages are aimed specifically at “taming” async callbacks by
allowing them to be written in a more synchronous style. I’ve included an
overview of these languages in Appendix 1, Tools for Taming JavaScript, on
page ?.

CoffeeScript

It’s no secret that I ♥ CoffeeScript, a beautiful and expressive language that
compiles to JavaScript. I use it extensively in my day-to-day work at HubSpot.
I’ve given talks on it at conferences like Railsconf and Øredev. And it was the
subject of my first book, CoffeeScript: Accelerated JavaScript Development.13

13. http://pragprog.com/book/tbcoffee/coffeescript

Introduction • xii

• Click HERE to purchase this book now. discuss

http://altjs.org
http://pragprog.com/book/tbcoffee/coffeescript
http://pragprog.com/titles/tbajs
http://forums.pragprog.com/forums/tbajs

But when I started writing the book you’re reading now, I decided that doing
it in CoffeeScript would needlessly limit its appeal. By and large, Coffee-
Scripters understand JavaScript perfectly well, whereas code like square = (x)
=> x * x might as well be hieroglyphics to JavaScript purists.14

So, if you’re a CoffeeScripter, my apologies for the curly braces. Rest assured
that the lessons you draw from this book will carry over to any altJS language.

Resources for This Book

This book has a website at http://pragprog.com/book/tbajs/async-javascript. There you
can download the example code used in the book, get up-to-date information,
and ask book-related questions in a friendly forum.

For more general JavaScript-related questions, I (again) heartily recommend
Stack Overflow.15 I have no affiliation with the site, but I am an avid fan with
a proud 23,000 reputation points (and counting). Coherent, well-formatted
questions there are almost always answered promptly.

Finally, if you want to contact me directly, you can reach me at trevorburn-
ham@gmail.com or on Twitter: @trevorburnham. I’m always happy to hear from my
readers.

Enough introduction. Let’s get our async on!

14. However, maybe not for long: http://wiki.ecmascript.org/doku.php?id=harmony:arrow_function_syntax.
15. http://stackoverflow.com/

• Click HERE to purchase this book now. discuss

Resources for This Book • xiii

http://pragprog.com/book/tbajs/async-javascript
http://wiki.ecmascript.org/doku.php?id=harmony:arrow_function_syntax
http://stackoverflow.com/
http://pragprog.com/titles/tbajs
http://forums.pragprog.com/forums/tbajs

