
Extracted from:

Async JavaScript
Build More Responsive Apps with Less Code

This PDF file contains pages extracted from Async JavaScript, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com




Async JavaScript
Build More Responsive Apps with Less Code

Trevor Burnham

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-27-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2012

http://pragprog.com


CHAPTER 5

Multithreading with Workers
At the start of this book, I described events as an alternative to multithreading.
More precisely, events replace a specific kind of multithreading, the kind
where multiple parts of an application process run simultaneously (either
virtually, through interrupts, or physically on multiple CPU cores). This gets
to be a problem when code running in different threads has access to the
same data. Even a line as simple as

i++;

can be a source of pernicious Heisenbugs1 when it allows separate threads
to modify the same i at the same time. Thankfully, this kind of multithreading
is impossible in JavaScript.

On the other hand, distributing tasks across multiple CPU cores is increas-
ingly essential because those cores are no longer making the same exponential
gains in efficiency, year after year, that used to be expected. So, we need
multithreading. Does that mean abandoning event-based programming?

Au contraire! While running on a single thread isn’t ideal, naïvely distributing
an app across multiple cores can be even worse. Multicore systems slow to
a crawl when those cores have to constantly talk to each other to avoid step-
ping on each other’s toes. It’s much better to give each core a separate job
and then sync up occasionally.

That’s precisely what workers do in JavaScript. From the master thread of
your application, you tell a worker, “Go run this code in a separate thread.”
The worker can send you messages (and vice versa), which take the form of
(what else?) callbacks run from the event queue. In short, you interact with
different threads the same way you do I/O in JavaScript.

1. http://en.wikipedia.org/wiki/Heisenbug

• Click  HERE  to purchase this book now.  discuss

http://en.wikipedia.org/wiki/Heisenbug
http://pragprog.com/titles/tbajs
http://forums.pragprog.com/forums/tbajs


In this chapter, we’ll look at workers in both their browser and Node manifes-
tations, and we’ll discuss some practical applications.

Threads vs. Processes

In this chapter, I throw around the words thread and process interchangeably. At the
operating system level, there’s an important distinction: threads within a process can
share state, while separate processes can’t. But in JavaScript, concurrent code (as
run by workers) never shares state. So, workers may be implemented using lightweight
OS threads, but they behave like processes.

There are Node libraries, most notably, Threads-A-GoGo,a that allow you to break
the state-sharing rule for the sake of efficiency. Those are beyond the scope of this
chapter, which is concerned only with concurrency in standard JavaScript.

a. https://github.com/xk/node-threads-a-gogo

5.1 Web Workers

Web workers are part of the living standard widely known as HTML5. To
create one, you call the global Worker constructor with the URL of a script.

var worker = new Worker('worker.js');
worker.addEventListener('message', function(e) {

console.log(e.data); // echo whatever was sent by postMessage
});

(Usually, we want only the data property from the message event. If we were
binding the same event handler to multiple workers, we could use e.target to
determine which worker emitted the event.)

So, now we know how to listen to workers. Conveniently, the interface for
talking to workers is symmetrical: we use worker.postMessage to send it, and the
worker uses self.addEventListener('message', ...) to receive it. Here’s a complete
example:

// master script
var worker = new Worker('boknows.js');
worker.addEventListener('message', function(e) {

console.log(e.data);
});
worker.postMessage('football');
worker.postMessage('baseball');

// boknows.js
self.addEventListener('message', function(e) {

self.postMessage('Bo knows ' + e.data);
});

Chapter 5. Multithreading with Workers • 8

• Click  HERE  to purchase this book now.  discuss

https://github.com/xk/node-threads-a-gogo
http://pragprog.com/titles/tbajs
http://forums.pragprog.com/forums/tbajs


You can play with the message-passing interface at a little site I created, the
Web Worker Sandbox.2 Any time you create a new example, it gets a unique
URL that you can share.

Restrictions on Web Workers

Web workers are primarily intended to handle complex computations without
compromising DOM responsiveness. Potential uses include the following:

• Decoding video as it streams in with the Broadway implementation of the
H.264 codec3

• Encrypting communications with the Stanford JavaScript Crypto Library4

• Parsing text in a web-based editor, à la Ace5

In fact, Ace already does this by default. When you type code into an Ace-
based editor, Ace needs to perform some pretty heavy string analysis before
updating the DOM with appropriate syntax highlighting. In modern browsers,
that analysis is done on a separate thread, ensuring that the editor remains
smooth and responsive.

Typically, the worker will send the result of its computations to the master
thread, which will then update the page. Why not update the page directly?
Mainly, to keep JavaScript’s async abstractions intact. If a worker could alter
the page’s markup, we’d end up in the same place as Java, wrapping our
DOM manipulation code in mutexes and semaphores to avoid race conditions.

Likewise, a worker can’t see the global window object or any other object in the
master thread (or in other worker threads). When an object is sent through
postMessage, it’s transparently serialized and unserialized; think JSON.parse
(JSON.stringify(obj)). So, changes to the original object won’t affect the copy in the
other thread.

Even the trusty console object isn’t available to workers. All a worker can see
is its own global object, called self, and everything bundled with it: standard
JavaScript objects like setTimeout and Math, plus the browser’s Ajax methods.

Ah yes, Ajax! A worker can use XMLHttpRequest freely. It can even use WebSocket
if the browser supports it. That means the worker can pull data directly from
the server. And if we’re dealing with a lot of data (like, say, streaming video

2. http://webworkersandbox.com/
3. https://github.com/mbebenita/Broadway
4. http://crypto.stanford.edu/sjcl/
5. http://ace.ajax.org/

• Click  HERE  to purchase this book now.  discuss

Web Workers • 9

http://webworkersandbox.com/
https://github.com/mbebenita/Broadway
http://crypto.stanford.edu/sjcl/
http://ace.ajax.org/
http://pragprog.com/titles/tbajs
http://forums.pragprog.com/forums/tbajs


that needs to be decoded), keeping it in one thread rather than serializing it
with postMessage is a big win.

There’s also a special importScripts function that will (synchronously) load and
run the given script(s).

importScripts('https://raw.github.com/gist/1962739/danika.js');

Normally, synchronous loading is a big no-no, but remember that we’re in a
secondary thread here. As long as the worker has nothing else to do, blocking
is A-OK.

Which Browsers Support Web Workers?

On the desktop, the Web Worker standard has been implemented in Chrome,
Firefox, and Safari for a couple of years, and it’s in IE10. Mobile support is
spotty as well. The latest iOS Safari supports them, but the latest Android
browser doesn’t. At the time of this writing, that translates into 59.12 percent
browser support, according to Caniuse.com.6

In short, you can’t count on your site’s users having web workers. You can,
however, easily write a shim to run the target script normally if window.Worker
is unavailable. Web workers are just a performance enhancement after all.

Be careful to test web workers in multiple browsers because there are some
critical differences among the implementations. For instance, Firefox allows
workers to spawn their own “subworkers,” but Chrome currently doesn’t.

5.2 Node Workers with cluster

In the early days of Node, there were many competing APIs for multithreading.
Most of these solutions were clumsy, requiring users to spin up multiple
instances of a server to listen on different TCP ports, which would then be
hooked up to the real one via proxy. It was only in the 0.6 release that a
standard was included out of the box that allowed multiple processes to bind
to the same port: cluster.7

Typically, cluster is used to spin up one process per CPU core for optimal per-
formance (though whether each process will actually get its own core is
entirely up to the underlying OS).

6. http://caniuse.com/webworkers
7. http://nodejs.org/docs/latest/api/cluster.html

Chapter 5. Multithreading with Workers • 10

• Click  HERE  to purchase this book now.  discuss

http://caniuse.com/webworkers
http://nodejs.org/docs/latest/api/cluster.html
http://pragprog.com/titles/tbajs
http://forums.pragprog.com/forums/tbajs


Multithreading/cluster.js
var cluster = require('cluster');
if (cluster.isMaster) {

// spin up workers
var coreCount = require('os').cpus().length;
for (var i = 0; i < coreCount; i++) {

cluster.fork();
}
// bind death event
cluster.on('death', function(worker) {

console.log('Worker ' + worker.pid + ' has died');
});

} else {
// die immediately
process.exit();

}

The output will look something like

Worker 15330 has died❮
Worker 15332 has died
Worker 15329 has died
Worker 15331 has died

with one line for each CPU core.

The code may look baffling at first. The trick is that while web workers load
a separate script, cluster.fork() causes the same script that it’s run from to be
loaded in a separate process. The only way the script knows whether it’s being
run as the master or a worker is by checking cluster.isMaster.

The reason for this design decision is that multithreading in Node has a very
different primary use case than multithreading in the browser. While the
browser can relegate any surplus threads to background tasks, Node servers
need to scale up the computational resources available for their main task:
handling requests.

(External scripts can be run as separate processes using child_process.fork.8

Its capabilities are largely identical to those of cluster.fork—in fact, cluster uses
child_process under the hood—except that child process can’t share TCP ports.)

Talking to Node Workers

As with web workers, cluster workers can communicate with the master process
by sending message events, and vice versa. The API is slightly different,
though.

8. http://nodejs.org/docs/latest/api/child_process.html

• Click  HERE  to purchase this book now.  discuss

Node Workers with cluster • 11

http://media.pragprog.com/titles/tbajs/code/Multithreading/cluster.js
http://nodejs.org/docs/latest/api/child_process.html
http://pragprog.com/titles/tbajs
http://forums.pragprog.com/forums/tbajs


Multithreading/clusterMessage.js
var cluster = require('cluster');
if (cluster.isMaster) {

// spin up workers
var coreCount = require('os').cpus().length;
for (var i = 0; i < coreCount; i++) {

var worker = cluster.fork();
worker.send('Hello, Worker!');
worker.on('message', function(message) {
if (message._queryId) return;
console.log(message);

});
}

} else {
process.send('Hello, main process!');
process.on('message', function(message) {

console.log(message);
});

}

The output will look something like

Hello, main process!
Hello, main process!
Hello, Worker!
Hello, Worker!
Hello, main process!
Hello, Worker!
Hello, main process!
Hello, Worker!

where the order is unpredictable, because each thread is racing to console.log
first. (You’ll have to manually terminate the process with Ctrl+C.)

As with web workers, the API is symmetric, with a send call on one side trig-
gering a 'message' event on the other side. But notice that the argument to send
(or rather, a serialized copy) is given directly by the 'message' event, rather than
being attached as the data property.

Notice the line

if (message._queryId) return;

in the master message handler? Node sometimes sends its own messages
from the workers, which always look something like this:

{ cmd: 'online', _queryId: 1, _workerId: 1 }

It’s safe to ignore these internal messages, but be aware that they’re used to
perform some important magic behind the scenes. Most notably, when

Chapter 5. Multithreading with Workers • 12

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/tbajs/code/Multithreading/clusterMessage.js
http://pragprog.com/titles/tbajs
http://forums.pragprog.com/forums/tbajs


workers try to listen on a TCP port, Node uses internal messages to allow the
port to be shared.

Restrictions on Node Workers

For the most part, cluster obeys the same rules as web workers: there’s a
master, and there are workers; they communicate via events with attached
strings or serializable objects. However, while workers are obviously second-
class citizens in the browser, Node’s workers possess all the rights and
privileges of the master except, notably, the following:

• The ability to shut down the application
• The ability to spawn more workers
• The ability to communicate with each other

This gives the master the burden of being a hub for all interthread communi-
cation. Fortunately, this inconvenience can be abstracted away with a library
like Roly Fentanes’ Clusterhub.9

In this section, we’ve seen how workers have become an integral part of Node,
allowing a server to utilize multiple cores without running multiple application
instances. Node’s cluster API allows the same script to run concurrently, with
one master process and any number of workers. To minimize the overhead
of communication, shared state should be stored in an external database,
such as Redis.

5.3 What We’ve Learned

It’s early, but I’d say the future of multicore JavaScript is bright. For any
application that can be split up into largely independent processes that need
to talk to each other only periodically, workers are a winning solution for
leveraging maximum CPU power. Distributed computing has never been more
fun.

9. https://github.com/fent/clusterhub

• Click  HERE  to purchase this book now.  discuss

What We’ve Learned • 13

https://github.com/fent/clusterhub
http://pragprog.com/titles/tbajs
http://forums.pragprog.com/forums/tbajs



