
Extracted from:

CoffeeScript
Accelerated JavaScript Development

This PDF file contains pages extracted from CoffeeScript, published by the Prag-
matic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com .

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

CoffeeScript
Accelerated JavaScript Development

Trevor Burnham

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2011 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-78-4
Printed on acid-free paper.
Book version: P1.0—July 2011

http://pragprog.com

JavaScript was never meant to be the most important programming language
in the world. It was hacked together in ten days, with ideas from Scheme
and Self packed into a C-like syntax. Even its name was an awkward fit,
referring to a language with little in common besides a few keywords.1 But
once JavaScript was released, there was no controlling it. As the only lan-
guage understood by all major browsers, JavaScript quickly became the
lingua franca of the Web. And with the introduction of Ajax in the early
2000s, what began as a humble scripting language for enhancing web pages
suddenly became a full-fledged rich application development language.

As JavaScript’s star rose, discontent came from all corners. Some pointed
to its numerous little quirks and inconsistencies.2 Others complained about
its lack of classes and inheritance. And a new generation of coders, who
had cut their teeth on Ruby and Python, were stymied by its thickets of
curly braces, parentheses, and semicolons.

A brave few created frameworks for web application development that gen-
erated JavaScript code from other languages, notably Google’s GWT and
280 North’s Objective-J. But few programmers wanted to add a thick layer
of abstraction between themselves and the browser. No, they would press
on, dealing with JavaScript’s flaws by limiting themselves to “the good parts”
(as in Douglas Crockford’s 2008 similarly titled book).

That is, until now.

The New Kid in Town

On Christmas Day 2009, Jeremy Ashkenas first released CoffeeScript, a
little language he touted as “JavaScript’s less ostentatious kid brother.” The
project quickly attracted hundreds of followers on GitHub as Ashkenas and
other contributors added a bevy of new features each month. The language’s
compiler, originally written in Ruby, was replaced in March 2010 by one
written in CoffeeScript.

After its 1.0 release on Christmas 2010, CoffeeScript became one of Github’s
“most-watched” projects. And the language attracted another flurry of atten-
tion in April 2011, when David Heinemeier Hansson confirmed rumors that
CoffeeScript support would be included in Ruby on Rails 3.1.

1. See Peter Seibel’s interview with Brendan Eich, the creator of JavaScript, in Coders
at Work [Sei09].

2. http://wtfjs.com/

• CLICK HERE to purchase this book now. discuss

http://wtfjs.com/
http://pragprog.com/titles/tbcoffee
http://forums.pragprog.com/forums/tbcoffee

Why did this little language catch on so quickly? Three reasons come to
mind: familiarity, safety, and readability.

The Good Parts Are Still There

JavaScript is vast. It contains multitudes. JavaScript offers many of the
best features of functional languages while retaining the feel of an imperative
language. This subtle power is one of the reasons that JavaScript tends to
confound newcomers: functions can be passed around as arguments and
returned from other functions; objects can have new methods added at any
time; in short, functions are first-class objects.

All that power is still there in CoffeeScript, along with a syntax that encour-
ages you to use it wisely.

The Compiler Is Here to Help

Imagine a language with no syntax errors, a language where the computer
forgives you your typos and tries as best it can to comprehend the code you
give it. What a wonderful world that would be! Sure, the program wouldn’t
always run the way you expected, but that’s what testing is for.

Now imagine that you write that code once and send it out to the world, typos
and all, and millions of computers work around your small mistakes in
subtly different ways. Suddenly statements that your computer silently
skipped over are crashing your entire app for thousands of users.

Sadly, that’s the world we live in. JavaScript doesn’t have a standard inter-
preter. Instead, hundreds of browsers and server-side frameworks run
JavaScript in their own way. Debugging cross-platform inconsistencies is
a huge pain.

CoffeeScript can’t cure all of these ills, but the compiler tries its best to
generate JavaScript Lint-compliant output3, which is a great filter for com-
mon human errors and nonstandard idioms. And if you type something that
just doesn’t make any sense, such as 2 = 3, the CoffeeScript compiler will
tell you. Better to find out sooner than later.

It’s All So Clear Now

Writing CoffeeScript can be highly addictive. Why? Take this piece of
JavaScript:

function cube(num) {

3. http://www.javascriptlint.com/

• CLICK HERE to purchase this book now. discuss

• v

http://www.javascriptlint.com/
http://pragprog.com/titles/tbcoffee
http://forums.pragprog.com/forums/tbcoffee

return Math.pow(num, 3);
}
var list = [1, 2, 3, 4, 5];
var cubedList = [];
for (var i = 0; i < list.length; i++) {

cubedList.push(cube(list[i]));
}

Now here’s an equivalent snippet of CoffeeScript:

cube = (num) -> Math.pow num, 3
list = [1, 2, 3, 4, 5]
cubedList = (cube num for num in list)

For those of you keeping score, that’s half the character count and less than
half the line count! Those kinds of gains are common in CoffeeScript. And
as Paul Graham once put it, “Succinctness is power.”4

Shorter code is easier to read, easier to write, and, perhaps most critically,
easier to change. Gigantic heaps of code tend to lumber along, as any signif-
icant modifications require a Herculean effort. But bite-sized pieces of code
can be revamped in a few swift keystrokes, encouraging a more agile, iterative
development style.

It’s worth adding that switching to CoffeeScript isn’t an all-or-nothing
proposition—CoffeeScript code and JavaScript code can interact freely.
CoffeeScript’s strings are just JavaScript strings, and its numbers are just
JavaScript numbers; even its classes work in JavaScript frameworks like
Backbone.js.5 So don’t be afraid of calling JavaScript code from CoffeeScript
code or vice versa. As an example, we’ll talk about using CoffeeScript with
one of JavaScript’s most popular libraries in Chapter 5, Web Interactivity
with jQuery, on page ?.

But enough ancient history. Coding is believing, everything else is just meta,
and as Jeff Atwood once said,“Meta is murder.”6 So let’s talk a little bit about
the book you’re reading now, and then—in just a few pages, I promise!—we’ll
start banging out some hot code.

Who This Book Is For

If you’re interested in learning CoffeeScript, you’ve come to the right place!
However, because CoffeeScript is so closely linked to JavaScript, there are
really two languages running through this book—and not enough pages to

4. http://www.paulgraham.com/power.html
5. http://documentcloud.github.com/backbone/
6. http://www.codinghorror.com/blog/2009/07/meta-is-murder.html

• CLICK HERE to purchase this book now. discuss

• vi

http://www.paulgraham.com/power.html
http://documentcloud.github.com/backbone/
http://www.codinghorror.com/blog/2009/07/meta-is-murder.html
http://pragprog.com/titles/tbcoffee
http://forums.pragprog.com/forums/tbcoffee

Embedding JavaScript in CoffeeScript

This is as good a place as any to mention that you can stick JavaScript inside of
CoffeeScript code by surrounding it with backticks, like so:

console.log `impatient ? useBackticks() : learnCoffeeScript()`

The CoffeeScript compiler simply ignores everything between the backticks. That
means that if, for instance, you declare a variable between the backticks, that
variable won’t obey conventional CoffeeScript scope rules.

In all my time writing CoffeeScript, I’ve never once needed to use backtick escapes.
They’re an eyesore at best and dangerous at worst. So in the immortal words of
Troy McClure: “Now that you know how it’s done—don’t do it.”

teach you both. Therefore, I’m going to assume that you know some
JavaScript.

You don’t have to be John “JavaScript Ninja” Resig. In fact, if you’re only
an amateur JavaScripter, great! You’ll learn a lot about JavaScript as you
go through this book. Check the footnotes for links to additional resources
that I recommend. If you’re new to programming entirely, you should defi-
nitely check out Eloquent JavaScript [Hav11], which is also available in an
interactive online format.7 If you’ve dabbled a bit but want to become an
expert, head to the JavaScript Garden.8 And if you want a comprehensive
reference, no one does it better than the Mozilla Developer Network.9

You may notice that I talk about Ruby a lot in this book. Ruby inspired
many of CoffeeScript’s great features, like implicit returns, splats, and
postfix if/unless. And thanks to Rails 3.1, CoffeeScript has a huge following
in the Ruby world. So if you’re a Rubyist, great! You’ve got a head start. If
not, don’t sweat it; everything will fall into place once you have a few exam-
ples under your belt.

If anything in the book doesn’t make sense to you, I encourage you to post
a question about it on the book’s forum.10 While I try to be clear, the only
entities to whom programming languages are completely straightforward
are computers—and they buy very few books.

7. http://eloquentjavascript.net/
8. http://javascriptgarden.info/
9. https://developer.mozilla.org/en/JavaScript/Guide
10. http://forums.pragprog.com/forums/169

• CLICK HERE to purchase this book now. discuss

• vii

http://eloquentjavascript.net/
http://javascriptgarden.info/
https://developer.mozilla.org/en/JavaScript/Guide
http://forums.pragprog.com/forums/169
http://pragprog.com/titles/tbcoffee
http://forums.pragprog.com/forums/tbcoffee

How This Book Is Organized

We’ll start our journey by discovering the various ways that we can compile
and run CoffeeScript code. Then we’ll delve into the nuts and bolts of the
language. Each chapter will introduce concepts and conventions that tie
into our ongoing project (see the next section).

To master CoffeeScript, you’ll need to know how it works with the rest of
the JavaScript universe. So after learning the basics of the language, we’ll
take brief tours of jQuery, the world’s most popular JavaScript framework,
and Node.js, an exciting new project that lets you run JavaScript outside
of the browser. While we won’t go into great depth with either tool, we’ll see
that they go with CoffeeScript like chocolate and peanut butter. And by
combining their powers, we’ll be able to write an entire multiplayer game in
just a few hours.

No matter what level you’re at, be sure to do the exercises at the end of each
chapter. They’re designed to be quick yet challenging, illustrating some of
the most common pitfalls CoffeeScripters fall into. Try to solve them on your
own before you check the answers in Appendix 1, Answers to Exercises, on
page ?.

The code presented in this book, as well as errata and discussion forums,
can be found on its PragProg page: http://pragprog.com/titles/tbcoffee/cof-
feescript.

About the Example Project: 5x5

The last section of each chapter applies the new concepts to an original
word game called 5x5. As its name suggests, 5x5 is played on a grid five
tiles wide and five tiles high. Each tile has a random letter placed on it at
the start. Then the players take turns swapping letters on the grid, scoring
points for all words formed as a result of the swap (potentially, this can be
four words at each of the two swapped tiles: one running horizontally, one
vertically, and two diagonally—only left-to-right diagonals count).

Scoring is based on the Scrabble point value of the letters in the formed
words, with a multiplier for the number of distinct words formed. So, at the
upper limit, if eight words are formed in one move, then the point value of
each is multiplied by eight. Words that have already been used in the game
don’t count.

We’ll build a command-line version of the game in Chapters 2–4, then move
it to the browser in Chapter 5, Web Interactivity with jQuery, on page ?,

• CLICK HERE to purchase this book now. discuss

• viii

http://pragprog.com/titles/tbcoffee/coffeescript
http://pragprog.com/titles/tbcoffee/coffeescript
http://pragprog.com/titles/tbcoffee
http://forums.pragprog.com/forums/tbcoffee

Figure 1—In the console and web versions of our project, the game logic code will be
the same.

and finally add multiplayer capability in Chapter 6, Server-Side Apps with
Node.js, on page ?. Moving the code from the command line to the browser
to the server will be super-easy—they all speak the same language!

The CoffeeScript Community

A great language is of little use without a strong community. If you run into
problems, who you gonna call?

Posting a question to StackOverflow (being sure to tag your question coffee-
script) is a terrific way to get help, especially if you post a snippet of the code
that’s hassling you.11 If you need a more immediate answer, you can usually
find friendly folks in the #coffeescript channel on Freenode IRC. For relaxed
discussion of CoffeeScript miscellany, try the Google Group.12 For more
serious problems, such as possible bugs, you should create an issue on
GitHub.13 You can also request new language features there. CoffeeScript
is still evolving, and the whole team welcomes feedback.

What about documentation? You’ve probably already seen the snazzy official
docs at http://coffeescript.org. There’s also an official wiki at http://github.
com/jashkenas/coffee-script/wiki. And now there’s this book.

11. http://stackoverflow.com
12. http://groups.google.com/forum/#!forum/coffeescript
13. http://github.com/jashkenas/coffee-script/issues

• CLICK HERE to purchase this book now. discuss

• ix

http://coffeescript.org
http://github.com/jashkenas/coffee-script/wiki
http://github.com/jashkenas/coffee-script/wiki
http://stackoverflow.com
http://groups.google.com/forum/#!forum/coffeescript
http://github.com/jashkenas/coffee-script/issues
http://pragprog.com/titles/tbcoffee
http://forums.pragprog.com/forums/tbcoffee

Which brings us to me. I run @CoffeeScript on Twitter; you can reach me
there, or by good old-fashioned email at trevorburnham@gmail.com.

These are exciting times for web development. Welcome aboard!

• CLICK HERE to purchase this book now. discuss

• x

http://pragprog.com/titles/tbcoffee
http://forums.pragprog.com/forums/tbcoffee

