
Extracted from:

CoffeeScript
Accelerated JavaScript Development

This PDF file contains pages extracted from CoffeeScript, published by the Prag-
matic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com .

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

CoffeeScript
Accelerated JavaScript Development

Trevor Burnham

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2011 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-78-4
Printed on acid-free paper.
Book version: P1.0—July 2011

http://pragprog.com

Running JavaScript on the server has long been a dream of web developers.
Rather than switching back and forth between a client-side language and
a server-side language, a developer using a JavaScript-powered server would
only need to be fluent in that lingua franca of web apps—or in its twenty-
first-century offshoot, CoffeeScript.

Now that dream is finally a reality. In this chapter, we’ll take a brief tour of
Node.js, starting with its module pattern (part of the CommonJS specifica-
tion). Then we’ll figure out just what an “evented architecture” is, with its
implications for both server performance and our sanity. Finally, we’ll add
a Node back end to our 5x5 project from the last chapter, with real-time
multiplayer support powered by WebSocket.

6.1 What Is Node.js?

Ignore the name: Node.js isn’t a JavaScript library. Instead, Node.js is a
JavaScript interpreter (powered by V8, the engine used by Google’s Chrome
browser) that interfaces with the underlying operating system. That way,
JavaScript run by Node.js can read and write files, spawn processes,
and—most enticingly—send and receive HTTP requests.

Like CoffeeScript, Node is a new project (dating to early 2009) that’s taken
off rapidly and attracted all kinds of excitement. Witness the Node.js
Knockout, a Rails Rumble-inspired competition to develop the best Node
app in forty-eight hours.1

A number of awesome projects have already been written with Node and
CoffeeScript. The following is a small, select sampling. You might want to
come back to this list after you’ve completed the book; reading real-world
code is a great way to take your mastery to the next level:

• Docco [Ash11]: Uber-computer scientist Donald Knuth advocated “literate
programming,” in which code and comments are written so that someone
encountering the program for the first time can understand it just by
reading it once. Docco, written by Jeremy Ashkenas, supports this
methodology by generating beautiful web pages in which comments and
code are displayed side-by-side.

• Eco [Ste11]: Say you’re writing a Node-based web application. You have
all of these HTML skeletons and a mess of application code, but you’re
not sure how to combine the two. Eco lets you embed CoffeeScript
within your markup, turning it into a server-side templating language.

1. http://nodeknockout.com/

• CLICK HERE to purchase this book now. discuss

http://nodeknockout.com/
http://pragprog.com/titles/tbcoffee
http://forums.pragprog.com/forums/tbcoffee

• Zappa [NM11]: Creating web applications from scratch has never been
simpler. Zappa is a layer on top of Node’s popular Express framework
that lets you succinctly define how your web server should respond to
arbitrary HTTP requests.2 Works great with Eco, too!

• Zombie.js [Ark11]: There’s a new kid on the full-stack web app testing
block: Zombie.js. Zombie lets you validate your application’s behavior
with the power of Sizzle, the same selection engine that powers jQuery.
Not only is it easy to use, it’s also insanely fast.

You can find a more comprehensive list of CoffeeScript-powered apps of all
kinds at http://github.com/jashkenas/coffee-script/wiki/In-The-Wild.

6.2 Modularizing Code with ’exports’ and ’require’

In past chapters, we’ve used global to put variables in an application-wide
namespace. While global has its place, Noders generally prefer to keep their
code nice and modular, with each file having its own namespace. How, then,
do you share objects from one file with another?

The answer is a special object called exports, which is part of the CommonJS
module standard. A file’s exports object is returned when another file calls
require on it. So, for instance, let’s say that I have two files:

Download Nodejs/app.coffee
util = require './util'

console.log util.square(5)

Download Nodejs/util.coffee
console.log 'Now generating utility functions...'
exports.square = (x) -> x * x

When you run coffee app.coffee, require './util' executes util.coffee and then returns
its exports object, giving you the following:

Now generating utility functions...
25

You might be wondering why we didn’t need to specify a file extension. A .js
file extension is always optional under Node.js. .coffee is also optional but
only if the running application has loaded the coffee-script library, which is
always implicitly done when we use coffee to run a file. coffee-script also tells
Node how to handle CoffeeScript files. So if we compiled app to JavaScript
but not util, then we’d have to write this:

2. http://expressjs.com

• CLICK HERE to purchase this book now. discuss

Modularizing Code with ’exports’ and ’require’ • 5

http://github.com/jashkenas/coffee-script/wiki/In-The-Wild
http://media.pragprog.com/titles/tbcoffee/code/Nodejs/app.coffee
http://media.pragprog.com/titles/tbcoffee/code/Nodejs/util.coffee
http://expressjs.com
http://pragprog.com/titles/tbcoffee
http://forums.pragprog.com/forums/tbcoffee

Download Nodejs/app.js
require('coffee-script');
var util = require('./util');
console.log(util.square(5));

When a library’s name isn’t prefixed with . or /, Node looks for a matching
file in one of its library paths, which you can see by looking at require.paths.

By convention, a library’s name for require is the same as its name for npm.
Recall, for instance, that we used npm install -g coffee-script to install CoffeeScript.
That gave us the coffee binary, but also the coffee-script library. We’ll be using
npm to install some more libraries for our project at the end of this chapter.

6.3 Thinking Asynchronously

One of the most common complaints about JavaScript has always been its
lack of support for threading. While popular languages like Java, Ruby, and
Python allow several tasks to be carried out simultaneously, JavaScript is
strictly linear.

Yet what might seem on its surface to be JavaScript’s greatest weakness is
now widely seen as a blessing in disguise. Without threads, there are no
mutexes, no race conditions, no endless sleep loops. Many of the most com-
mon sources of software bugs are banished. What’s more, multithreading
often adds significant overhead to an application, especially to web servers,
which is one reason why Node.js has a reputation as an efficient alternative
to frameworks in languages that typically rely on threads for concurrency.

(Of course, without threads there’s no way to take advantage of multiple
processors. The good news is that there are already projects out there, such
as multi-node and cluster, that effectively bind multiple instances of your
app to the same server port, giving you the performance advantages of par-
allel processing without the headaches of sharing data across threads.3)

Because JavaScript is event-oriented rather than thread-oriented, events
only run when all other execution has stopped. Imagine how frustrating it
would be if every time your application made a request (say, to the file system
or to an HTTP server), it froze up completely until the request was completed!
For that reason, nearly every function in the Node.js API uses a callback:
you make your request, Node.js quickly passes it along, and your application
continues as if nothing happened. When your request is completed (or goes
awry), the function you passed to Node.js gets called.

3. http://github.com/kriszyp/multi-node and http://github.com/learnboost/cluster,
respectively.

• CLICK HERE to purchase this book now. discuss

Thinking Asynchronously • 6

http://media.pragprog.com/titles/tbcoffee/code/Nodejs/app.js
http://github.com/kriszyp/multi-node
http://github.com/learnboost/cluster
http://pragprog.com/titles/tbcoffee
http://forums.pragprog.com/forums/tbcoffee

For example, if you wanted to show the contents of the current directory,
you would write the following:

fs = require 'fs'
fs.readdir '.', (err, files) ->

console.log files
console.log 'This will happen first.'

Here’s what happens:

1. We ask Node.js to read the current directory with fs.readdir, passing a
callback.

2. Node.js passes the request along to the operating system, then immedi-
ately returns.

3. We print 'This will happen first.' to the console.

4. Once our code has run, Node.js checks to see if the operating system
has answered our request yet. It has, so it runs our callback, and a list
of files in the current directory is printed to the console.

You got that? This is very important to understand. Your code is never inter-
rupted. No matter how many RPMs your hard drive has, that callback isn’t
getting run until after all of your code has run. JavaScript code never gets
interrupted. Even the seemingly precise setTimeout and setInterval will wait
forever if your code gets stuck in an infinite loop.

All of that is as true in the browser as it is in Node, but it’s doubly important
to understand in Node because your application logic will take the form of
tangled chains of callbacks. Have no doubt about it. The challenge is to
manage them in a way that humans can understand.

Consider how a simple form submission to a web application gets handled:

1. We get the user’s information from the database to check that they have
permission to make the request.

2. If so, we update the database accordingly.

3. We read a template from the file system, customize it appropriately, and
send it to the user.

Then, at the very least, our application skeleton looks like this:

formRequestReceived = (req) ->
checkDatabaseForPermissions req, ->

updateDatabase req, ->
renderTemplate req, (tmpl) ->

sendResponse tmpl

• CLICK HERE to purchase this book now. discuss

Thinking Asynchronously • 7

http://pragprog.com/titles/tbcoffee
http://forums.pragprog.com/forums/tbcoffee

And that’s without error-handling at each step!

Unfortunately, that matryoshka doll feeling is never quite going to go away.
The fact is, in most languages you’d rely on threads so that you could just
write something like this:

formRequestReceived = (req) ->
if checkDatabaseForPermissions req

updateDatabase req
tmpl = renderTemplate req
sendResponse tmpl

But those languages are pretending to synchronize the asynchronous.
Somewhere in each of those database-calling and file-reading functions,
there’s a sleep loop saying, “I hope someone else does something useful while
I wait to hear from the database.” It’s simpler on the surface, but at a price
in memory, CPU, and—more often than not—unpleasant surprises.

Note that many NodeJS API functions do offer a synchronous version for
convenience. For instance, instead of using fs.readdir with a callback, you can
call fs.readdirSync and simply get the list of filenames returned to you. If your
application doesn’t have any events waiting to fire, then there’s no reason
not to use these convenient alternatives.

Unfortunately, there’s no way to implement a synchronous version of an
arbitrary asynchronous function in JavaScript or CoffeeScript. It’s only
possible using native extensions (typically written in C++), which are beyond
the scope of this book.

Scope in Loops

Remember what we learned in Section 2.2, Scope: Where You See ’Em, on
page ?: only functions create scope. Expecting loops to create scope leads
otherwise mild-mannered programmers to summon forth horrific bugs when
dealing with asynchronous callbacks. In fact, this is probably the most
common source of confusion in asynchronous code.

For instance, let’s say that we have an application that loads numbers from
some (synchronous) source and keeps a running tally of those numbers
until the sum meets or exceeds limit. Each time a number is loaded, that
number—and the sum thus far—needs to be saved. Also, due to overzealous
security requirements, each save needs to be encrypted using a key unique
to the given number. That key must be fetched asynchronously via the getEn-
cryptionKey function.

A first attempt might look like this:

• CLICK HERE to purchase this book now. discuss

Thinking Asynchronously • 8

http://pragprog.com/titles/tbcoffee
http://forums.pragprog.com/forums/tbcoffee

sum = 0
while sum < limit

sum += x = nextNum()
getEncryptionKey (key) ->

saveEncrypted key, x, sum # FAIL!

The problem here is that by the time the getEncryptionKey callback is called, x
and sum have moved on—in fact, the entire loop has been run. So for each
x the loop goes through, the values of x and sum after the loop has finished
running will be saved (most likely with the wrong encryption key).

The solution is to capture the values of x and sum. The easiest way to do that
is to use an anonymous function. The do keyword was added to CoffeeScript
for precisely this purpose:

sum = 0
while sum < limit

sum += x = nextNum()
do (x, sum) ->

getEncryptionKey (key) ->
saveEncrypted key, x, sum # Success!

If you’re familiar with Lisp, this use of do should remind you of the let key-
word. do (x, sum) -> ... is shorthand for ((x, sum) -> ...)(x, sum). So now the line
saveEncrypted key, x, sum references the copies of x and sum created by the do
instead of the x and sum used by the loop.

Note that this form shadows the outer x and sum, making them inaccessible.
If you want to have access to the original variables while still capturing their
values, then you might write something like this:

do ->
capturedX = x; capturedSum = sum
...

Now it’s time for a little project of our own, extending the jQuery version of
5x5 with a Node-powered back end.

• CLICK HERE to purchase this book now. discuss

Thinking Asynchronously • 9

http://pragprog.com/titles/tbcoffee
http://forums.pragprog.com/forums/tbcoffee

