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Mini-Project: Refactored Checkbook Balancer
Let’s take what we’ve learned from this chapter and use it to add a new feature
to the checkbook balancer from Mini-Project: Checkbook Balancer, on page ?
—while making the code more maintainable!

The original checkbooks program allowed you to pick one of three accounts
(“checking,” “savings,” and “mattress”) and deposit or withdraw money from
that account. The program had one limitation that made it slightly impractical:
no persistence. When you closed the program, all account balances were reset
to $0. The new checkbooks2 will remedy that by serializing account objects to
a JSON file. We’ll also add a “transfer” action that moves money from one
account to another.

Let’s start by creating a new directory for our project and installing the same
dependencies as before:

$ npm init
$ npm install --save inquirer
$ npm install --save numeral

And we’ll add one new one, jsonfile:4

$ npm install --save jsonfile

Now into the code! We’re going to make three changes to our createAccount
function. First, we’re going to add a transfer method to the account object.
Second, we’re going to call a utility saveState function every time we perform
an action. Third, we’re going to switch from having argument lists to having
a single “options” argument and extracting the values we want using the
destructuring syntax. This gives us a lot more flexibility if we add new features
to a function, because we don’t have to add more and more arguments in an
increasingly hard-to-remember order.

Collections/checkbooks2/checkbooks2.coffee
createAccount = ({name}) ->

{
name: name
balance: 0

description: ->
"#{@name}: #{dollarsToString(@balance)}"

deposit: ({amount}) ->
@balance += amount

4. https://github.com/jprichardson/node-jsonfile
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saveState()
@

withdraw: ({amount}) ->
@balance -= amount
saveState()
@

transfer: ({toAccount, amount}) ->
@balance -= amount
toAccount.balance += amount
saveState()
@

}

We’re going to start with the same accounts as the original checkbooks, but
unlike before, we’re going to store them in an array:

Collections/checkbooks2/checkbooks2.coffee
accounts = [

createAccount({name: 'Checking'})
createAccount({name: 'Savings'})
createAccount({name: 'Mattress'})

]

Now for the tricky part: defining the interface. In the original checkbooks I tried
to make this code as linear as possible, which worked reasonably well because
our three prompts were always given in the same order: pick an account, pick
an action, enter an amount. But the new “transfer” action requires a additional
input (the destination account), which we’d like to prompt for before we prompt
for the amount. Writing all of this logic in a linear fashion is still possible,
but the resulting code wouldn’t be much fun to read. So let’s separate out
the details—the parameters we pass to Inquirer.js to define each prompt—
from the core application logic. This makes the core logic nice and easy to
grok, with just two “steps” (one before an action is selected, and the other
after):

Collections/checkbooks2/checkbooks2.coffee
inquirer = require('inquirer')

mainStep = ->
inquirer.prompt([

makeAccountPrompt()
makeActionPrompt()

], postActionStep)

postActionStep = ({account, action}) ->
prompts = [makeAmountPrompt({action})]
if action is 'transfer'
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prompts.unshift makeToAccountPrompt({fromAccount: account})
inquirer.prompt(prompts, ({amount, toAccount}) ->

amount = inputToNumber(amount)
account[action]({amount, toAccount})
mainStep()

)

Once again, we’re going heavy on object arguments so that we don’t have to
worry about the order of arguments. CoffeeScript’s destructuring syntax
really shines here.

And now for the prompt definitions:

Collections/checkbooks2/checkbooks2.coffee
makeAccountPrompt = ->

{
name: 'account'
message: 'Pick an account:'
type: 'list'
choices: for account in accounts
{name: account.description(), value: account}

}

makeActionPrompt = ->
{

name: 'action'
message: 'Pick an action:'
type: 'list'
choices: [
{name: 'Deposit $ into this account', value: 'deposit'}
{name: 'Withdraw $ from this account', value: 'withdraw'}
{name: 'Transfer $ to another account', value: 'transfer'}

]
}

makeToAccountPrompt = ({fromAccount}) ->
{

name: 'toAccount'
message: 'Pick an account to transfer $ to:'
type: 'list'
choices: for account in accounts when account isnt fromAccount
{name: account.description(), value: account}

}

makeAmountPrompt = ({action}) ->
{

name: 'amount'
message: "Enter the amount to #{action}:"
type: 'input'
validate: (input) =>
if isNaN(inputToNumber(input))
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return 'Please enter a numerical amount.'
if inputToNumber(input) < 0

return 'Please enter a non-negative amount.'
true

}

We need to define the same utility functions as in the original checkbooks, plus
a new one to save the state of our accounts to a JSON file:

Collections/checkbooks2/checkbooks2.coffee
numeral = require ('numeral')
jsonfile = require('jsonfile')

dollarsToString = (dollars) ->
numeral(dollars).format('$0,0.00')

inputToNumber = (input) ->
parseFloat input.replace(/[$,]/g, ''), 10

saveState = ->
jsonfile.writeFileSync('./data.json', accounts)

Now when we start the program, we try to load that JSON file and set the
appropriate balance value for each account. Then we go to the main step:

Collections/checkbooks2/checkbooks2.coffee
try

data = jsonfile.readFileSync('./data.json')
for account, i in accounts

account.balance = data[i].balance

mainStep()

Here’s what it looks like in action:

$ coffee checkbooks2.coffee
[?] Pick an account: Checking: $0.00
[?] Pick an action: deposit
[?] Enter the amount to deposit: 1000000
[?] Pick an account: Checking: $1,000,000.00
[?] Pick an action: transfer
[?] Pick an account to transfer $ to: (Use arrow keys)
> Savings: $0.00

Mattress: $0.00
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