
Extracted from:

CoffeeScript
Accelerated JavaScript Development, Second Edition

This PDF file contains pages extracted from CoffeeScript, published by the Prag-
matic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

CoffeeScript
Accelerated JavaScript Development, Second Edition

Trevor Burnham

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing (indexer)
Cathleen Small (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-94122-226-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2015

https://pragprog.com
rights@pragprog.com

CHAPTER 6

Web Servers with Node and Express
Running JavaScript on the server has long been a dream of web developers.
Rather than switching back and forth between a client-side language and a
server-side language, a developer using a JavaScript-powered server would
need to be fluent only in that lingua franca of web apps—or in a dialect such
as CoffeeScript.

Now that dream is finally a reality. In this chapter, we’ll take a brief tour of
Node, the preeminent environment for running JavaScript outside of the
browser. Then we’ll figure out just what an “evented architecture” is, with its
implications for both server performance and our sanity. Finally, we’ll create
a Node back end for our project from the previous chapter, allowing us to
persist our task cards in a proper database.

What Is Node?
Node (also called Node.js in contexts where the term “Node” might be
ambiguous) is a JavaScript runtime environment powered by V8, the engine
used by Google’s Chrome browser. While browsers provide a JavaScript
environment with an API that allows code to interact with a web page, the
Node API gives JavaScript access to the underlying operating system. That
means that scripts running in Node can read and write files, spawn processes,
and bind to TCP ports. In fact, any functionality that can be accessed by a C
program can be added to Node via addons.1

But the most exciting thing about Node isn’t the technology, it’s the commu-
nity. Node developers have accomplished amazing feats since Node’s debut
in early 2009, building a rich ecosystem of open-source packages and using
Node in production at high-profile companies such as PayPal, LinkedIn, and

1. http://nodejs.org/api/addons.html

• Click HERE to purchase this book now. discuss

http://nodejs.org/api/addons.html
http://pragprog.com/titles/tbcoffee2
http://forums.pragprog.com/forums/tbcoffee2

Uber. To see some of the cool mini-projects the community has built, look no
further than the Node Knockout, an annual competition to develop the best
Node app in forty-eight hours.2

Node also has the best package manager on the planet, npm.3 Although
originally started independently, npm was quickly embraced as an official
accompaniment to Node, and the two projects are now developed in tandem
to complement each other. I like npm so much that I wrote a (short) book
about it: The npm Book.4 You’ll get a taste of npm as we build this chapter’s
project.

Writing Node Modules
In the browser, isolating scripts is a pain. Ultimately, every variable a script
defines is either scoped in a function or attached to the global object, called
window. Expressing dependencies from one script on another is a pain, too.
How many times have you written if (window.x) ...? These problems are addressed
by the proposed standard for ES6 modules, but it will take years before
browser support is widespread.

Thankfully, Node has its own solution to this problem. Every file is its own
module with isolated variable scope. There is a global object, simply called
global (more semantic than window, wouldn’t you agree?), but it’s rarely used.
Instead, each module attaches data it wants to share to a special object called
exports. When a script wants to load a module as a dependency, it uses Node’s
require function, passing in a partial file path. (More details on that in a
moment.) Here’s a simple example:

strings.js
exports.hello = 'Hello, Node modules!';

main.js
var strings = require('./strings');
console.log(strings.hello);

$ node main.js
Hello, Node modules!

When Node came across the function call require('./strings'), it blocked execution
(a rare thing in Node) while it looked for any of the following in the same
directory as main.js, in this order:

2. http://nodeknockout.com/
3. https://www.npmjs.org/
4. https://leanpub.com/npm

• 4

• Click HERE to purchase this book now. discuss

http://nodeknockout.com/
https://www.npmjs.org/
https://leanpub.com/npm
http://pragprog.com/titles/tbcoffee2
http://forums.pragprog.com/forums/tbcoffee2

1. strings.js (a JavaScript module)

2. strings.json (a JSON data file)

3. strings.node (a native addon)

4. A directory named strings with a file named index.js, index.json, or index.node
(or a different file specified as “main” by a package.json in that directory)

In our example, of course, Node didn’t have to look very far. It found strings.js,
executed it, and returned the object corresponding to exports in strings.js from
the require function in main.js.

When require is used with a nonrelative path, it looks for a file with that name
in the directory where npm installs packages—or, more accurately, a hierarchy
of directories, all named node_modules. It starts with ./node_modules, then
../node_modules, and so on until it gets down to /node_modules. (None of these
directories has to exist, of course. Node simply skips the ones that don’t.)
Finally, it looks in a handful of global locations, although using global modules
is discouraged. I mentioned some of the potential problems with global npm
modules in Building the Project with Grunt, on page ?.

The rules for using require with a relative path combine beautifully with the
node_modules hierarchy: when you npm install coffee-script, you get a node_modules/coffee-
script directory with a package.json that points to the “main” JavaScript file that
defines the API for the CoffeeScript compiler. That package.json also lists the
project’s own dependencies, which npm installs in node_modules/coffee-
script/node_modules. Those, in turn, can have their own dependencies. But you
don’t have to worry about any of that from the root project: require('coffee-script')
just works. And that’s why npm is the best package manager on the planet.

You may be asking: “Okay, but how do I load a CoffeeScript file?” That’s a
reasonable question that’s been an area of surprising controversy in Node-
land. Early on, Node offered the ability to register extensions to require. After
registering the .coffee file extension, you could write require('./script.coffee'), and
Node would know to pass that file into the CoffeeScript compiler before exe-
cuting it. However, the JavaScript purists disliked this feature, and it is now
marked as deprecated. No big deal: compiling CoffeeScript before runtime is
perfectly sensible. It allows us to deal with compile-time bugs and runtime
bugs separately. With the project setup we’ll create in the next section, we’ll
enjoy automatic recompilation, plus source maps for debugging. Who could
ask for more?

• Click HERE to purchase this book now. discuss

Writing Node Modules • 5

http://pragprog.com/titles/tbcoffee2
http://forums.pragprog.com/forums/tbcoffee2

Compiling a Node Project with Grunt
In the previous chapter, we used Grunt to compile our CoffeeScript files into
JavaScript (and source maps) to be served to the browser. For this chapter’s
project, we’ll have two kinds of CoffeeScript files: files that define JavaScript
to be sent to the browser, and files that should be run locally in Node. So
we’ll keep them in two separate directories, /assets and /src. We’ll use our Node
server to serve our compiled assets to the browser. Any time any of our files
change, we’ll restart the Node server to ensure that it reflects our changes.

We’ll keep our assets that don’t have to be compiled (our CSS and HTML files,
as well as the external JS we’ll install through Bower) in the assets directory
as well, and copy them into /lib with everything else we would need to deploy
our project (except for the third-party packages in /node_modules). To do that,
we’ll use another Grunt plugin, grunt-contrib-copy.5

To manage our local Node server, we’ll use the grunt-nodemon6 plugin, which
wraps around the excellent nodemon.7 nodemon watches files and restarts
our Node server.

One wrinkle: both grunt-contrib-watch (which we’ll be using to automatically
recompile our project when source files change, as in the previous chapter)
and grunt-nodemon keep running indefinitely, and Grunt tasks normally run
in a one-at-a-time fashion. To run them at the same time, we need to use yet
another plugin, grunt-concurrent.8

If you think this sounds quite complicated, well, you’re right. Setting up the
perfect Grunt configuration for a project can take quite a bit of work, because
the possibilities for custom tailoring are endless. But once it’s set up, the
dividends (compared to compiling manually) are enormous.

As in the last chapter, let’s start by setting up our project directory:

$ mkdir coffee-tasks
$ cd coffee-tasks
$ npm init

And now let’s install Grunt and the plugins we need, including the ones from
the previous chapter:

5. https://github.com/gruntjs/grunt-contrib-copy
6. https://github.com/ChrisWren/grunt-nodemon
7. https://github.com/remy/nodemon
8. https://github.com/sindresorhus/grunt-concurrent

• 6

• Click HERE to purchase this book now. discuss

https://github.com/gruntjs/grunt-contrib-copy
https://github.com/ChrisWren/grunt-nodemon
https://github.com/remy/nodemon
https://github.com/sindresorhus/grunt-concurrent
http://pragprog.com/titles/tbcoffee2
http://forums.pragprog.com/forums/tbcoffee2

$ npm install -g grunt-cli
$ npm install --save-dev grunt
$ npm install --save-dev grunt-eco
$ npm install --save-dev grunt-concurrent
$ npm install --save-dev grunt-contrib-watch
$ npm install --save-dev grunt-contrib-copy
$ npm install --save-dev grunt-contrib-coffee
$ npm install --save-dev grunt-nodemon

Whew! Okay, that’s all set. Now here’s our Gruntfile:

Node/Gruntfile.coffee
module.exports = (grunt) ->

grunt.loadNpmTasks('grunt-eco')
grunt.loadNpmTasks('grunt-concurrent')
grunt.loadNpmTasks('grunt-contrib-watch')
grunt.loadNpmTasks('grunt-contrib-copy')
grunt.loadNpmTasks('grunt-contrib-coffee')
grunt.loadNpmTasks('grunt-nodemon')

grunt.initConfig
watch:
coffeeAssets:

files: 'assets/coffee/*.coffee'
tasks: ['coffee:compileAssets']

coffeeServer:
files: 'src/*.coffee'
tasks: ['coffee:compileServer']

eco:
files: 'assets/templates/*.eco'
tasks: ['eco:compile']

css:
files: 'assets/css/*.css'
tasks: ['copy:css']

html:
files: 'assets/html/*.html'
tasks: ['copy:html']

coffee:
compileAssets:

expand: true
flatten: true
options:

sourceMap: true
cwd: 'assets/coffee/'
src: ['*.coffee']
dest: 'lib/public/js/'
ext: '.js'

compileServer:
expand: true
flatten: true

• Click HERE to purchase this book now. discuss

Compiling a Node Project with Grunt • 7

http://media.pragprog.com/titles/tbcoffee2/code/Node/Gruntfile.coffee
http://pragprog.com/titles/tbcoffee2
http://forums.pragprog.com/forums/tbcoffee2

options:
sourceMap: true

cwd: 'src/'
src: ['*.coffee']
dest: 'lib/'
ext: '.js'

eco:
compile:

options:
basePath: 'assets'

src: 'assets/templates/*.eco'
dest: 'lib/public/js/templates.js'

copy:
css:

files: [{
expand: true
cwd: 'assets/css/'
src: ['*.css']
dest: 'lib/public/css/'

}]
html:

files: [{
expand: true
cwd: 'assets/html/'
src: ['*.html']
dest: 'lib/public/'

}]
bower:

files: [{
expand: true
flatten: true
cwd: 'bower_components/'
src: [
'jquery/dist/jquery.js'
'underscore/underscore.js'
'backbone/backbone.js'

]
dest: 'lib/public/js/'

}]

nodemon:
dev:

script: 'lib/server.js'
watch: 'lib'
ext: '*'
options:

nodeArgs: ['--debug']

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tbcoffee2
http://forums.pragprog.com/forums/tbcoffee2

concurrent:
dev:

tasks: ['nodemon', 'watch']
options:

logConcurrentOutput: true

grunt.registerTask('build', ['coffee', 'eco', 'copy'])
grunt.registerTask('default', ['build', 'concurrent'])

It’s a lot to take in, but in practice it should feel pretty straightforward: you’ll
be editing files in /src (for the server) and /assets (for the front end), all of which
will go into /lib. The root of /lib is reserved for the files that make up our Node
server, while the contents of /lib/public will be directly available to the browser.
This new directory structure allows us to simplify our index.html nicely:

Node/assets/html/index.html
<!DOCTYPE html>
<html>
<head>

<title>CoffeeTasks</title>

<!-- Libraries -->
<script src="js/jquery.js"></script>
<script src="js/underscore.js"></script>
<script src="js/backbone.js"></script>

<!-- Templates -->
<script src="js/templates.js"></script>

<!-- Backbone models/views -->
<script src="js/card.js"></script>
<script src="js/column.js"></script>
<script src="js/board.js"></script>

<!-- Application core -->
<script src="js/application.js"></script>

<!-- Stylesheets -->
<link rel="stylesheet" href="css/normalize.css">
<link rel="stylesheet" href="css/style.css">

</head>
<body>

<!-- All content is rendered client-side -->
</body>
</html>

In the next section, we’ll get our server up and running.

• Click HERE to purchase this book now. discuss

Compiling a Node Project with Grunt • 9

http://media.pragprog.com/titles/tbcoffee2/code/Node/assets/html/index.html
http://pragprog.com/titles/tbcoffee2
http://forums.pragprog.com/forums/tbcoffee2

