
Extracted from:

Test-Driven React
Find Problems Early, Fix Them Quickly, Code with Confidence

This PDF file contains pages extracted from Test-Driven React, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Test-Driven React
Find Problems Early, Fix Them Quickly, Code with Confidence

Trevor Burnham

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Jacquelyn Carter
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-646-4
Book version: P1.0—June 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

The Tao of Test-Driven Development
Test-driven development (TDD) is sometimes defined as writing tests first.
Although that’s an important part of the methodology, it’s not the essence.
The essence of TDD is rapid iteration. You’ll find that you learn more quickly
from iterating—writing small, easy-to-understand pieces of code one at a
time—than you would from trying to plan out a complex program from the
ground up. You’ll discover bad assumptions and potential pitfalls before you
invest too much work. And you’ll find the process more enjoyable, a smooth
incremental progression rather than an alternation between bursts of inspi-
ration and plateaus of “What do I do next?”

Our project for this chapter will be a solver for the classic programming
challenge Fizz Buzz.10 Here are the rules of Fizz Buzz:

Write a program that prints the numbers from 1 to 100. But for multiples of three
print “Fizz” instead of the number and for the multiples of five print “Buzz.” For
numbers which are multiples of both three and five print “FizzBuzz.”

If that sounds simple to you, congratulations: you’re a programmer!

In this section, you’ll apply the TDD process to implementing a function that
takes a number and returns the appropriate Fizz Buzz output. First, you’ll
write a single test, knowing that it’ll fail. Second, you’ll write an implementa-
tion that satisfies the test. Once the test is passing, you’ll use Git to save your
progress.

Starting from Failure
Create an index.js with a placeholder implementation of fizzBuzz(), so that your
tests will have a valid referent:

// index.js
module.exports = (num) => `${num}`;

Now add an index.test.js with a test for a single Fizz Buzz rule:

10. http://wiki.c2.com/?FizzBuzzTest

• Click HERE to purchase this book now. discuss

http://wiki.c2.com/?FizzBuzzTest
http://pragprog.com/titles/tbreact
http://forums.pragprog.com/forums/tbreact

// index.test.js
const fizzBuzz = require('./index');

describe('fizzBuzz()', () => {
it('returns "FizzBuzz" for multiples of 3 and 5', () => {

expect(fizzBuzz(15)).toBe('FizzBuzz');
expect(fizzBuzz(30)).toBe('FizzBuzz');

});
});

Run the test:

$ npm test
...
FAIL ./index.test.js
fizzBuzz()
✕ returns "FizzBuzz" for multiples of 3 and 5 (7ms)

● fizzBuzz() › returns "FizzBuzz" for multiples of 3 and 5

expect(received).toBe(expected) // Object.is equality

Expected value to be:
"FizzBuzz"

Received:
"15"

3 | describe('fizzBuzz()', () => {
4 | it('returns "FizzBuzz" for multiples of 3 and 5', () => {

> 5 | expect(fizzBuzz(15)).toBe('FizzBuzz');
6 | expect(fizzBuzz(30)).toBe('FizzBuzz');
7 | });
8 | });

at Object.it (index.test.js:5:32)

Test Suites: 1 failed, 1 total
Tests: 1 failed, 1 total
Snapshots: 0 total
Time: 0.771s, estimated 1s
Ran all test suites.

You may have cringed when you saw that glowing red FAIL. After all, having
tests fail against production code is bad. But having tests fail during develop-
ment can be a good thing! It means that you’ve anticipated some way your
code could fail. Think of every failing test you see during development as a
potential bug you’ve preemptively squashed.

Running Jest Tests Automatically
Jumping to the console every time you want to run some tests is a chore. Hap-
pily, Jest has a “watch mode” in which it automatically re-runs all tests when
it detects any change to a test file, or to a source file depended on by a test.

• 2

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tbreact
http://forums.pragprog.com/forums/tbreact

To start Jest in watch mode, run it with the --watchAll flag:

$ npx jest --watchAll

Now you should see the same failure result as before. Try saving either index.js
or index.test.js, and the test will re-run. (Blink and you might miss it!) You can
press q at any time to quit. For now, leave Jest watch mode running.

Getting to Green
Since Jest is watching your project, see if you can tackle the ‘"FizzBuzz"‘ test case:

// index.js
module.exports = (num) => {➤

if (num % 15 === 0) return 'FizzBuzz';➤

return `${num}`➤

};➤

As soon as you hit save, your console output should change:

PASS ./index.test.js
fizzBuzz()
✓ returns "FizzBuzz" for multiples of 3 and 5

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 0.121s, estimated 1s
Ran all test suites.

Achievement unlocked: you’ve just completed a test-driven development cycle!

Measuring Test Coverage
A great feature of Jest is its built-in code coverage measurement. This shows
you how much of the code being tested actually ran during tests. To compute
code coverage, add the --coverage flag. By default, this saves a report to a coverage
directory, as well as showing a summary in the console. To just get that
summary output, use the flag --coverageReporters=text:

$ npm run test -- --coverage --coverageReporters=text

PASS ./index.test.js
fizzBuzz()
✓ returns "FizzBuzz" for multiples of 3 and 5

----------|----------|----------|----------|----------|-------------------|
File	% Stmts	% Branch	% Funcs	% Lines	Uncovered Line #s
All files | 75 | 50 | 100 | 66.67 | |
index.js | 75 | 50 | 100 | 66.67 | 3 |

----------|----------|----------|----------|----------|-------------------|

• Click HERE to purchase this book now. discuss

The Tao of Test-Driven Development • 3

http://pragprog.com/titles/tbreact
http://forums.pragprog.com/forums/tbreact

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 0.121s, estimated 1s
Ran all test suites.

Here the report shows 75% of statements were covered, and 50% of branches.
“Branches” refer to the possible outcomes of if/else statements. The 50% result
reflects the fact that the current test only covers the case where the condition
num % 15 === 0 passes. Try adding a test to cover the case where it fails:

// index.test.js
const fizzBuzz = require('../index');

describe('fizzBuzz()', () => {
it('returns "FizzBuzz" for multiples of 3 and 5', () => {

expect(fizzBuzz(15)).toBe('FizzBuzz');
expect(fizzBuzz(30)).toBe('FizzBuzz');

});

it('returns the given number for multiples of neither 3 nor 5', () => {➤

expect(fizzBuzz(1)).toBe('1');➤

expect(fizzBuzz(22)).toBe('22');➤

});➤

});

Then run the test with code coverage again:

$ npm run test -- --coverage --coverageReporters=text

PASS tests/index.test.js
fizzBuzz()
✓ returns "FizzBuzz" for multiples of 3 and 5 (3ms)
✓ returns the given number for multiples of neither 3 nor 5 (1ms)

----------|----------|----------|----------|----------|-------------------|
File	% Stmts	% Branch	% Funcs	% Lines	Uncovered Line #s
All files | 100 | 100 | 100 | 100 | |
index.js | 100 | 100 | 100 | 100 | |

----------|----------|----------|----------|----------|-------------------|
Test Suites: 1 passed, 1 total
Tests: 2 passed, 2 total
Snapshots: 0 total
Time: 1.01s
Ran all test suites.

Perfect! The report confirms that every possible code path was taken when
the tests ran.

Like all metrics, code coverage is imperfect—projects with impressive code
coverage numbers don’t necessarily have the most useful tests—but the

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tbreact
http://forums.pragprog.com/forums/tbreact

numbers can still guide you in the right direction. It’s especially handy for
identifying parts of your project with large gaps in test coverage.

Checking in Changes
Whenever you add a new test and get it to pass, that’s a good time to get your
project into source control. That way, no matter what you do to the project,
you can always restore it to the all-green state later.

We’ll use Git as our source control system in this book. If you’re not familiar
with Git, you might want to read through the “Git Basics” section of the
excellent Pro Git by Scott Chacon and Ben Straub.11

The first step is initializing this project as a Git repository:

$ git init
Initialized empty Git repository in
/Users/tburnham/code/test-driven-fizzbuzz/.git/

Don’t commit just yet. If you run git status, you’ll notice that there are a stag-
gering number of files! Remember those “538 packages” npm mentioned when
you installed Jest? They’re all hanging out in the project’s node_modules direc-
tory. Fortunately, we don’t need to keep those in source control, because all
of the information needed to re-create the node_modules tree is contained in
package-lock.json. So tell Git to ignore the installed packages by creating a .gitignore
file at the root of the project:

ch1/.gitignore
node_modules/

There. Now the project looks a lot more manageable, from Git’s point of view:

$ git status
On branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

.gitignore
index.js
index.test.js
package-lock.json
package.json

nothing added to commit but untracked files present (use "git add" to track)

11. https://git-scm.com/book/en/v1/Getting-Started-Git-Basics

• Click HERE to purchase this book now. discuss

The Tao of Test-Driven Development • 5

http://media.pragprog.com/titles/tbreact/code/ch1/.gitignore
https://git-scm.com/book/en/v1/Getting-Started-Git-Basics
http://pragprog.com/titles/tbreact
http://forums.pragprog.com/forums/tbreact

All of those files belong in source control, so stage them for commit:

$ git add .

Just for fun, this book uses the recommended gitmoji12 for all of its commit
messages. These are ASCII-friendly aliases that render as emoji on GitHub
and in some other tools. For a project’s first commit, the appropriate gitmoji
is :tada:, which represents the “Party Popper” emoji:13

$ git commit -m ":tada: First commit"
[master (root-commit) dca2255] :tada: First commit
5 files changed, 5893 insertions(+)
create mode 100644 .gitignore
create mode 100644 index.js
create mode 100644 index.test.js
create mode 100644 package-lock.json
create mode 100644 package.json

Congrats on completing your first feature! You wrote a test for the feature,
made the test pass, and then checked that change into source control. Satis-
fying, isn’t it?

As an exercise, see if you can repeat the TDD process for the remaining Fizz
Buzz requirements. Namely, your fizzBuzz() function should return:

1. “Fizz” for multiples of 3,
2. “Buzz” for multiples of 5, and
3. The given number for multiples of neither 3 nor 5

For each of those requirements, add a test within the same suite (the describe()
block), modify the implementation to make everything pass, then move to the
next requirement. You can find an example solution at the end of the chapter.

12. https://gitmoji.carloscuesta.me/
13. https://emojipedia.org/party-popper/

• 6

• Click HERE to purchase this book now. discuss

https://gitmoji.carloscuesta.me/
https://emojipedia.org/party-popper/
http://pragprog.com/titles/tbreact
http://forums.pragprog.com/forums/tbreact

