
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Introduction
I vividly remember the first time I wrote code. I was 10 years old and utterly
obsessed with robots. The local public library must have lent me every book
they had on the subject. One of those books had an appendix: “Write Your
Own Robot in BASIC.” I ran to my parents’ computer, fired up qbasic (bundled
with the cutting-edge MS-DOS operating system), and fed in the instructions
for my robot companion.

The program was unimpressive by today’s standards. It was a primitive version
of what we would now call a “chatbot.” It would give you a prompt like

>>> Greetings, human. How are you feeling today?

then wait for you to enter a recognizable string like tired, and give an appropri-
ate response like

>>> I am sorry to hear that. How about a nice cup of coffee?

and so on. The only keywords in the entire program were IF, THEN, and GOTO.

Even though my chatbot wouldn’t stand a snowball’s chance in a Turing test,
the exercise was a revelation to me: I could actually create something just by
typing. Now it seemed that robots were old news. Computers were where it’s at!

As computers have grown more capable, software has grown more complex,
and that thrilling feeling has become more elusive. New layers of abstraction
have empowered me to do more with less code, but at the cost of constant
uncertainty: Will my code do what I intended?

Test-driven development (TDD) is the art of minimizing that uncertainty,
allowing you to feel confident about your code from the moment you write it.
How? By making a few assertions about that code beforehand. This ground-
work sets up a short, satisfying feedback loop: as soon as you write your code,
the tests light up green. Afterward, the tests remain in place, standing guard
against regressions.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tbreact2
http://forums.pragprog.com/forums/tbreact2

I don’t always use TDD, but when I do, I feel a little bit closer to the magic of
that first coding experience. All of the rigamarole of modern software develop-
ment fades away. I can focus all my energies on reaching toward the green
light.

What’s in This Book
This is a book about React. But it’s not like any other book about React. This
is a book about writing React code in a joyful way. You might learn a few new
things about React, but that’s not my goal. My goal is to help you write better
code, and to have more fun doing it.

In Chapter 1, Test-Driven Development with Jest, on page ?, you’ll get a
taste of test-driven development, a programming methodology that uses tests
to create a feedback loop as you work. You’ll meet Jest, a lightning-fast test
framework which is the perfect companion for TDD.

Chapter 2, Integrated Tooling with VS Code, on page ? will introduce you to
some of my favorite tools: VS Code, an amazingly powerful editor; TypeScript,
a dramatic enhancement to the JavaScript language; and ESLint and Prettier,
the ultimate code beautification duo. You’ll experience the wonder of instan-
taneous feedback as you code.

Then in Chapter 3, Testing React with Testing Library, on page ?, you’ll start
writing React components and testing them with the aptly-named React
Testing Library. You’ll build a complex component the TDD way.

Chapter 4, Styling in JavaScript with Styled-Components, on page ? is all
about style. You’ll use the styled-components library to add pizzazz to your
React components without the need for separate CSS files. You’ll also learn
about testing styles and using one of Jest’s most powerful features: snapshots.

In Chapter 5, Refactoring with Hooks, on page ?, you’ll learn some important
techniques for refactoring React components. You’ll extract pieces of function-
ality into hooks, encouraging code reuse and allowing core components to
stay small and easy to test. And you’ll look at your components with X-ray
vision through the power of the React Devtools.

Finally, in the (as yet) unwritten I don't know how to generate a cross reference to chp.ci,
you’ll meet all the tools you’ll need to share what you have built with the
world. You’ll run your tests in the cloud with Travis CI, enforce your project’s
rules with Husky, and create beautiful, interactive documentation with
Storybook.

Introduction • iv

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tbreact2
http://forums.pragprog.com/forums/tbreact2

What’s Not in This Book
This is not an introduction to JavaScript. If you’re new to the language, or if
you just want a refresher, I highly recommend Kyle Simpson’s excellent You
Don’t Know JS1 series. Most of the code in this book will employ features
added to the language as part of the ECMAScript 6 (also known as ES6 or
ES2015) standard. Here’s a quick test:

const stringifyAll = (...args) => args.map(String);

If any of that syntax is confounding, you’ll find clarity in the ES6 & Beyond
volume of Simpson’s book series.

We’ll also be using TypeScript. TypeScript is a “superset” of JavaScript that
adds type annotations. The syntax may look strange at first, but the examples
in this book should be fairly easy to understand. If you’re interested in
learning more, try Matt Pocock’s Total TypeScript.2

Some familiarity with React is helpful, but not required. I’ll give a brief
explanation for each React concept we encounter. If you’re new to React, I’d
suggest Josh W. Comeau’s highly engaging Joy of React3 course.

All tests in this book are unit tests, meaning the JavaScript code is tested in
isolation. In production applications, I highly recommend adding functional
tests using a tool like Playwright4 in addition to unit tests.

Unit tests vs. functional tests

Unit tests, by definition, test a single unit of code (such as a React component) in
isolation. Nothing outside of that unit should affect whether the test passes or fails.
But that’s not how code works in the real world! In the context of a real application,
whether your component works or not is likely to depend on the behavior of other
components, on data returned by APIs, and on countless other factors.

So why write unit tests at all? Two reasons: First, unit tests are much faster. For
TDD, it’s critical to get feedback in seconds, not minutes. Second, unit tests are
easier to write. That’s why I recommend starting with unit tests, then adding func-
tional tests after you have a working application (but before shipping it to production!).

Even as your application’s functional requirements change, many of its components
will remain the same, so unit tests will continue to provide value. Functional tests,
on the other hand, will need to be rewritten as the application evolves.

1. https://github.com/getify/You-Dont-Know-JS
2. https://www.totaltypescript.com/
3. https://www.joyofreact.com
4. https://playwright.dev

• Click HERE to purchase this book now. discuss

What’s Not in This Book • v

https://github.com/getify/You-Dont-Know-JS
https://www.totaltypescript.com/
https://www.joyofreact.com
https://playwright.dev
http://pragprog.com/titles/tbreact2
http://forums.pragprog.com/forums/tbreact2

What’s New in the Second Edition
React development has seen an incredible evolution from 2019 to 2023, with
dramatic improvements for both the developer experience and the results we
can deliver to users. This edition reflects many of those improvements.

The most obvious change is the shift from JavaScript to TypeScript, Microsoft’s
typechecked JavaScript superset. TypeScript was a bleeding-edge technology
back in 2019; today it’s the industry standard for writing reliable code. Once
you start using TypeScript, you’ll wonder how you ever did without it! All of
the React code in this book is now in TypeScript, and TypeScript concepts
are explained for newcomers.

React code looks very different now than it did a few years ago, thanks to the
addition of hooks in React 16.8. Hooks are a powerful feature that allows
stateful components to be defined as a single function instead of a class.
Additionally, hooks are a neat way of encapsulating reusable functionality
across components. The chapter originally entitled “Refactoring with Higher-
Order Components“ has been replaced with one called Chapter 5, Refactoring
with Hooks, on page ?, and all React code has been updated to reflect best
practices as of React 18.

On the testing side of things, the Enzyme framework has fallen in popularity
in favor of the simply-named React Testing Library. It offers a conceptually
different approach to testing React components: Instead of making assertions
about a component’s state or the React tree it generates, you fully render the
component and look at the resulting DOM tree. This approach to React testing
has proven more intuitive (and less finicky), and is embraced in this edition.

Lastly, we’ve seen a revolution in web application build tools and frameworks
in the last few years. The first edition of this book walked readers through
the process of setting up a build chain with Webpack and Babel, step by step.
Today there are a number of “batteries included” frameworks that require
little to no configuration to compile modern React code. Some, like Next.js5

and Remix,6 are full-stack frameworks with a built-in Node.js instance for

5. https://nextjs.org/
6. https://remix.run/

Introduction • vi

• Click HERE to purchase this book now. discuss

https://nextjs.org/
https://remix.run/
http://pragprog.com/titles/tbreact2
http://forums.pragprog.com/forums/tbreact2

server-side rendering (SSR). This edition uses Vite,7 a lightweight alternative
to Webpack with a highly performant integrated testing library, Vitest.

How to Read the Code Examples
This book takes a hands-on, project-driven approach, which means that
source files often change over the course of a chapter. When a code example
is a work in progress, its file name (relative to the project root) is shown as a
comment at the top of the snippet:

// src/MyComponent.test.tsx
import { render, screen } from "@testing-library/react";
import MyComponent from "./MyComponent";

describe("MyComponent", () => {
it("renders a <div>", () => {

render(<MyComponent />);
expect(screen.getByRole("div")).toBeInTheDocument();

});
});

As a source file changes over the course of a chapter, familiar sections are
omitted with ... and new/edited lines are highlighted:

// src/MyComponent.test.tsx
...
describe("MyComponent", () => {

...
it("accepts a `className` prop", () => {➤

render(<MyComponent className="test-class" />);➤

expect(screen.getByRole("div")).toHaveClass("test-class");➤

});➤

});

The final version of a source file within a chapter has a download link at the
top instead of a comment:

intro/src/MyComponent.test.tsx
import { render, screen } from "@testing-library/react";
import userEvent from "@testing-library/user-event";
import MyComponent from "./MyComponent";

describe("MyComponent", () => {
it("renders a <div>", () => {

render(<MyComponent />);
expect(screen.getByRole("div")).toBeInTheDocument();

});

it("accepts a `className` prop", () => {

7. https://vitejs.dev/

• Click HERE to purchase this book now. discuss

How to Read the Code Examples • vii

http://media.pragprog.com/titles/tbreact2/code/intro/src/MyComponent.test.tsx
https://vitejs.dev/
http://pragprog.com/titles/tbreact2
http://forums.pragprog.com/forums/tbreact2

render(<MyComponent className="test-class" />);
expect(screen.getByRole("div")).toHaveClass("test-class");

});

it("triggers `onClick` when clicked", async () => {➤

const onClick = vi.fn();➤

render(<MyComponent onClick={onClick} />);➤

const nextButton = screen.getByRole("button");➤

const user = userEvent.setup();➤

await user.click(nextButton);➤

expect(onClick).toHaveBeenCalled();➤

});➤

});

Online Resources
You can find the source code for the projects in this book on the PragProg
website.8 You can also use the site to report errata. Help make this book
better for other readers!

Mantra: Code with Joy
At its best, coding is an exercise in imagination and exploration, an exciting
journey into the unknown. At its worst, it feels like stumbling in the dark.
Which kind of experience you’ll have is largely determined by feedback. The
next time you’re feeling frustrated, take a step back and ask yourself what
kind of feedback would help you move forward. What question can you ask
about your code that would bring clarity? Can you turn that question into
a test?

I hope this book will help you bring more joy to your work by instilling a habit
of seeking feedback early and often. Let’s begin!

Trevor Burnham

trevorburnham@gmail.com
Cambridge, MA, March 2024

8. https://pragprog.com/titles/tbreact2

Introduction • viii

• Click HERE to purchase this book now. discuss

https://pragprog.com/titles/tbreact2
http://pragprog.com/titles/tbreact2
http://forums.pragprog.com/forums/tbreact2

