
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Testing Nested Markup
So far, we’ve used React to encapsulate the functionality of a single DOM
element (<button>) in a component (CarouselButton). But React components are
capable of doing more than that.

We’re going to build a component called CarouselSlide, which will be responsible
for rendering several distinct DOM elements:

• An to display the actual image
• A <figcaption> to associate caption text with the image
• Text, some of which will be wrapped in for emphasis
• A <figure> to wrap it all up

We’ll take a TDD approach to building this tree while ensuring that the props
we provide to CarouselSlide are routed correctly. Start by creating a “stub” of
the component, a minimal implementation you can add functionality to later:

// src/CarouselSlide.tsx
const CarouselSlide = () => <figure />;

export default CarouselSlide;

Now for the tests! A good way to start is to check that the right type of DOM
element is rendered:

// src/CarouselSlide.test.tsx
import { render, screen } from "@testing-library/react";
import CarouselSlide from "./CarouselSlide";

describe("CarouselSlide", () => {
it("renders a <figure>", () => {

render(<CarouselSlide />);
expect(screen.getByRole("figure")).toBeInTheDocument();

});
});

This test should be green. So let’s add more requirements. We want the <figure>
to contain two children: an and a <figcaption>. To express that in a test,
you’ll need to write Testing Library queries for those elements. Testing Library
encourages the use of ARIA roles when possible; that way, tests are aligned
with best practices for writing accessible markup. The tag has an
associated ARIA role: "img". The <figcaption> tag, on the other hand, does not.
So we’ll use the data-testid attribute again to make it easy to select:

// src/CarouselSlide.test.tsx
//...
it("renders an and a <figcaption>", () => {➤

render(<CarouselSlide />);➤

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tbreact2
http://forums.pragprog.com/forums/tbreact2

const figure = screen.getByRole("figure");➤

const img = screen.getByRole("img");➤

const figcaption = screen.getByTestId("caption");➤

expect(figure).toContainElement(img);➤

expect(figure).toContainElement(figcaption);➤

});➤

//...

The new test will be red, since and <figcaption> don’t yet exist. Add them
to the CarouselSlide render tree:

// src/CarouselSlide.tsx
const CarouselSlide = () => (➤

<figure>➤

➤

<figcaption data-testid="caption" />➤

</figure>➤

);➤

export default CarouselSlide;

That should put you in the green. Next, we need to add content. For that,
we’ll supply three props:

1. imgUrl, a URL for the image displayed in the slide
2. description, a short piece of caption text
3. attribution, the name of image’s author

The imgUrl will be used as the src for the tag. Add a test:

// src/CarouselSlide.test.tsx
...
it("passes `imgUrl` through to the ", () => {➤

const imgUrl = "https://example.com/image.png";➤

render(<CarouselSlide imgUrl={imgUrl} />);➤

expect(screen.getByRole("img")).toHaveAttribute("src", imgUrl);➤

});➤

...

Modify CarouselSlide so that the imgUrl test turns green:

// src/CarouselSlide.tsx
const CarouselSlide = ({ imgUrl }: { imgUrl?: string }) => (➤

<figure>➤

➤

<figcaption data-testid="caption" />➤

</figure>➤

);➤

export default CarouselSlide;

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tbreact2
http://forums.pragprog.com/forums/tbreact2

Now let’s add another requirement. We want to add props called description and
attribution, and we want both to be rendered in <figcaption>, with the description
bolded by a tag:

// src/CarouselSlide.test.tsx
...
it("uses `description` and `attribution` as the caption", () => {➤

const props = {➤

description: "A jaw-droppingly spectacular image",➤

attribution: "Trevor Burnham",➤

};➤

render(<CarouselSlide {...props} />);➤

const figcaption = screen.getByTestId("caption");➤

expect(figcaption).toHaveTextContent(➤

`${props.description} ${props.attribution}`➤

);➤

});➤

...

Try making all tests pass. When you’re done, your implementation should
look something like this:

// src/CarouselSlide.tsx
import { ReactNode } from "react";

const CarouselSlide = ({
imgUrl,
description,
attribution,

}: {
imgUrl?: string;
description?: ReactNode;
attribution?: ReactNode;

}) => (
<figure>

<figcaption>
{description} {attribution}

</figcaption>
</figure>

);

export default CarouselSlide;

There’s one feature still missing from the component: in order to support
styling, we should pass the className and style props through to the <figure>.
In fact, for maximum flexibility, we should allow event handlers, data-
attributes, etc. In short: we should pass every prop except the three we’re
explicitly using through to the <figure>.

• Click HERE to purchase this book now. discuss

Testing Nested Markup • 5

http://pragprog.com/titles/tbreact2
http://forums.pragprog.com/forums/tbreact2

Add a test that sets an arbitrary assortment of props as the finishing touch
on CarouselSlide.test.tsx for this chapter:

ch3/src/CarouselSlide.test.tsx
import { render, screen } from "@testing-library/react";
import CarouselSlide from "./CarouselSlide";

describe("CarouselSlide", () => {
it("renders a <figure>", () => {

render(<CarouselSlide />);
expect(screen.getByRole("figure")).toBeInTheDocument();

});

it("renders an and a <figcaption>", () => {
render(<CarouselSlide />);
const figure = screen.getByRole("figure");
const img = screen.getByRole("img");
const figcaption = screen.getByTestId("caption");
expect(figure).toContainElement(img);
expect(figure).toContainElement(figcaption);

});

it("passes `imgUrl` through to the ", () => {
const imgUrl = "https://example.com/image.png";
render(<CarouselSlide imgUrl={imgUrl} />);
expect(screen.getByRole("img")).toHaveAttribute("src", imgUrl);

});

it("uses `description` and `attribution` as the caption", () => {
const props = {
description: "A jaw-droppingly spectacular image",
attribution: "Trevor Burnham",

};
render(<CarouselSlide {...props} />);
const figcaption = screen.getByTestId("caption");
expect(figcaption).toHaveTextContent(

`${props.description} ${props.attribution}`
);

});

it("passes other props through to the <figure>", () => {➤

const props = {➤

className: "my-carousel-slide",➤

"data-test-name": "My slide",➤

};➤

render(<CarouselSlide {...props} />);➤

const figure = screen.getByRole("figure");➤

expect(figure).toHaveClass(props.className);➤

expect(figure).toHaveAttribute("data-test-name", props["data-test-name"]);➤

});➤

});

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/tbreact2/code/ch3/src/CarouselSlide.test.tsx
http://pragprog.com/titles/tbreact2
http://forums.pragprog.com/forums/tbreact2

The most common way to implement this functionality is with the object rest
syntax. Here’s what it looks like:

ch3/src/CarouselSlide.tsx
import { ComponentPropsWithRef, ReactNode } from "react";

const CarouselSlide = ({
imgUrl,
description,
attribution,
...rest

}: {
imgUrl?: string;
description?: ReactNode;
attribution?: ReactNode;

} & ComponentPropsWithRef<"figure">) => (
<figure {...rest}>

<figcaption data-testid="caption">
{description} {attribution}

</figcaption>
</figure>

);

export default CarouselSlide;

As before, the function only takes a single argument that’s destructured into
individual variables. However, now there’s an object named rest that collects
all values from the props object that haven’t been explicitly destructured.

Conversely, the JSX spread {...rest} takes the key-value pairs from the rest
object and converts them into props. Since rest was originally created from
the leftover props given to CarouselSlide, the effect is to pass those
props—everything but imgUrl, description, and attribution—through to the <fig-
ure>.

You may be familiar with the rest/spread syntax from argument lists and
arrays, where it’s been supported since ES6. The object rest/spread syntax
is newer, and was added to the language as part of the ES2018 specification.

CarouselSlide and its tests should be looking ship-shape now! Make a commit:

:sparkles: Initial implementation of CarouselSlide

Just one component to go: Carousel itself.

• Click HERE to purchase this book now. discuss

Testing Nested Markup • 7

http://media.pragprog.com/titles/tbreact2/code/ch3/src/CarouselSlide.tsx
http://pragprog.com/titles/tbreact2
http://forums.pragprog.com/forums/tbreact2

