
Extracted from:

Apple Game Frameworks
and Technologies

Build 2D Games with SpriteKit & Swift

This PDF file contains pages extracted from Apple Game Frameworks and Tech-
nologies, published by the Pragmatic Bookshelf. For more information or to pur-

chase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Apple Game Frameworks
and Technologies

Build 2D Games with SpriteKit & Swift

Tammy Coron

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Margaret Eldridge
Copy Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-784-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To my children, Travis and Jake, and to my
husband, Bill: I love you guys so very, very

much. Life wouldn’t be the same without you.

Load the Textures
Remember, a texture is nothing more than an image, or a visual representation
for your sprite. To animate a sprite in SpriteKit, you can load an array of
textures and cycle through them. Given this is something you’ll do a lot, it
makes sense to use an extension2 to load the textures.

Extensions, which are common to many programming languages, are a great
way to reuse code, keep things organized, and extend the functionality of an
existing class. To keep your code further organized, you’ll put the extensions
into a separate file.

Create another new file (DN) using the iOS Swift File template. Name the file
SpriteKitHelper.swift and replace its contents with the following:

import Foundation
import SpriteKit

// MARK: - SPRITEKIT EXTENSIONS

extension SKSpriteNode {

}

You’re now ready to add your first SKSpriteNode extension method. Within the
brackets ({}) of the SKSpriteNode extension, add the following code:

// Used to load texture arrays for animations
func loadTextures(atlas: String, prefix: String,

startsAt: Int, stopsAt: Int) -> [SKTexture] {
var textureArray = [SKTexture]()
let textureAtlas = SKTextureAtlas(named: atlas)
for i in startsAt...stopsAt {

let textureName = "\(prefix)\(i)"
let temp = textureAtlas.textureNamed(textureName)
textureArray.append(temp)

}

return textureArray
}

This method takes four parameters: an atlas name, a prefix, and the start
and stop frame numbers for the animation. It then uses a for-in loop to build
and return the array of textures.

Now that you have a convenient way to load textures for your sprite nodes,
you can use it to load the textures for Blob’s walk cycle.

2. https://docs.swift.org/swift-book/LanguageGuide/Extensions.html

• Click HERE to purchase this book now. discuss

https://docs.swift.org/swift-book/LanguageGuide/Extensions.html
http://pragprog.com/titles/tcswift
http://forums.pragprog.com/forums/tcswift

Use the Load Textures Extension
Open the Player.swift file. At the top of the file, below the import statements and
above the class definition, add the following block of code:

// This enum lets you easily switch between animations
enum PlayerAnimationType: String {

case walk
}

Because you’ll add more animation types later, it makes sense to use an enu-
meration3 using the keyword, enum. An enumeration is a data type you can use
to store a set of named values. With the PlayerAnimationType enum, you can easily
refer to specific animation types elsewhere in your code using memorable
names like walk or run.

First, you need a private property to hold the walk textures. Inside the Player
class below the line that reads // MARK: - PROPERTIES, add the following code:

// Textures (Animation)
private var walkTextures: [SKTexture]?

Next, you need to add the init() and init(coder:) methods. You may get some errors
while adding these methods, but you can ignore them because they’ll disappear
once you’ve added all of the code.

Below the line that reads // MARK: - INIT, add the following block of code:

init() {

// Set default texture
let texture = SKTexture(imageNamed: "blob-walk_0")

// Call to super.init
super.init(texture: texture, color: .clear, size: texture.size())

// Set up animation textures
self.walkTextures = self.loadTextures(atlas: "blob", prefix: "blob-walk_",

startsAt: 0, stopsAt: 2)

// Set up other properties after init
self.name = "player"
self.setScale(1.0)
self.anchorPoint = CGPoint(x: 0.5, y: 0.0) // center-bottom

}

required init?(coder aDecoder: NSCoder) {
fatalError("init(coder:) has not been implemented")

}

3. https://docs.swift.org/swift-book/LanguageGuide/Enumerations.html

• 8

• Click HERE to purchase this book now. discuss

https://docs.swift.org/swift-book/LanguageGuide/Enumerations.html
http://pragprog.com/titles/tcswift
http://forums.pragprog.com/forums/tcswift

The init() method creates an SKTexture object using the first blob-walk image. It
then makes a call to super.init.

After calling super.init, the init() method calls your new extension method and
passes in the name of the atlas, the prefix for the images, and the start and end
numbers of the image names for this animation. To better understand how this
extension method works, consider the following code (but don’t add it to your
project):

// Create the array of textures
self.walkTextures = [SKTexture(imageNamed: "blob-walk_0"),

SKTexture(imageNamed: "blob-walk_1"),
SKTexture(imageNamed: "blob-walk_2")]

This code creates the walkTextures array in-line rather than by calling the
extension method like the following code does:

self.walkTextures = self.loadTextures(atlas: "blob", prefix: "blob-walk_",
startsAt: 0, stopsAt: 2)

Either way is acceptable, but with the extension method, you’re able to sim-
plify and reuse your code with other sprite nodes, making use of the DRY
(Don’t Repeat Yourself) principle.

The init() method also sets some additional properties like the name, scale, and
anchorPoint for the player sprite node.

The second method you added is init(coder:). The init(coder:) method is a required
method; it’s used when initializing a sprite from a scene file. You’re not using
scene files yet, so there’s not much you need to do with this method besides
include it.

With these two methods in place, you’re ready to add the player to the scene.

Add the Player to the Scene
Adding the player to the scene is a lot like adding the background and fore-
ground.

Start by opening the GameScene.swift file. At the end of the didMove(to:) method
and below the code block that sets up the foreground, add the following code:

// Set up player
let player = Player()
player.position = CGPoint(x: size.width/2, y: foreground.frame.maxY)
addChild(player)

This block of code initializes an instance of the Player class and sticks that
instance into a local variable. It then sets the position of the sprite node to

• Click HERE to purchase this book now. discuss

Load the Textures • 9

http://pragprog.com/titles/tcswift
http://forums.pragprog.com/forums/tcswift

the center of the scene and directly on top of the foreground node using the
maxY property on foreground.frame. The maxY property returns the maximum
y-value of a node, which in this case is the top of the foreground node.

Build and run the project.

So far, everything looks as expected, but there’s a potential problem. Can you
guess what it is?

No spoilers, but I’ll give you a hint: it has to do with the render order. To see
what I mean, move the background set-up code to the end of the didMove(to:)
method after adding the player. Now, build and run the project again.

Notice how the foreground and player are missing. Well, technically, they’re
not missing—you just can’t see them anymore because they’re behind the
background node. To fix this problem, you first need to learn how to control
the render order using a node’s z-position.

Control Render Order with Z-Position
When you add nodes to the scene, you’re building a node tree, which you
briefly read about in Chapter 1, Creating Scenes with Sprites and Nodes, on

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tcswift
http://forums.pragprog.com/forums/tcswift

page ?. The order in which you add a node to the scene determines how it’s
rendered. In this case, you added the background node last, which places it
on top of the other nodes.

Here’s how it works:

• The scene renders itself, clearing its contents to its background color.
• The scene renders the foreground node, the player node, and finally, the

background node.

You could build your scenes with this process in mind, but that can get
complicated as you add and remove nodes. Luckily, you’re able to change
how things render by using a node’s z-position. You can think of the z-position
as the node’s depth setting within the scene.

When you use z-positions to set up your nodes, the node tree gets rendered
differently. Here’s how it works:

• The global z-position for each node is calculated by recursively adding its
z-position to its parent’s z-position.

• The drawing order is determined by the node’s z-position and is ordered
from lowest to highest.

• If two nodes share the same z-position, parent nodes are rendered first,
followed by siblings and their children. The child nodes are rendered in
the order in which they appear in the parent’s children array.

The default z-position for a node is 0. Setting this to a higher number brings
it closer to the top. So, a z-position of 10, for example, is on top of a node
whose z-position is set to 5.

Although you can set the z-position for each node using hard-coded numbers
throughout your code, it’s best to use an enum. Using an enum makes it
easier to maintain your code as you build more advanced scenes.

Open the SpriteKitHelper.swift file and add the following code to the top of this
file, below the import statements:

// MARK: - SPRITEKIT HELPERS

// Set up shared z-positions
enum Layer: CGFloat {

case background
case foreground
case player

}

• Click HERE to purchase this book now. discuss

Control Render Order with Z-Position • 11

http://pragprog.com/titles/tcswift
http://forums.pragprog.com/forums/tcswift

This code creates a new Layer enum that you can use for ordering the different
nodes. Because player is last in the list, it has the highest number, which
means any nodes that use this value will appear on the top-most layer.

Now that you have an enum available for setting a z-position value, you can
use it to set the node’s zPosition property.

Open the Player.swift file, and inside the init() method, add the following line
after setting the anchorPoint:

self.zPosition = Layer.player.rawValue

Here, you’re using one of the enum values you set up earlier to set the node’s
zPosition property. Because this is the player node, you want it to appear on top
of everything else.

Next, open the GameScene.swift file, and inside the didMove(to:) method, update
the code for both the background and foreground nodes.

For the background node, below the line of code that sets its anchorPoint, add
the following:

background.zPosition = Layer.background.rawValue

For the foreground node, below the line of code that sets its anchorPoint, add
the following:

foreground.zPosition = Layer.foreground.rawValue

Build and run the project to confirm everything is working as expected.

Although you can keep the code as it is now—remember, in Add the Player
to the Scene, on page 9, you swapped the order in which you’re adding nodes
to the scene—it’s better to put everything back the way it was. For reference,
the didMove(to:) method should look like this:

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tcswift
http://forums.pragprog.com/forums/tcswift

override func didMove(to view: SKView) {

// Set up background
let background = SKSpriteNode(imageNamed: "background_1")
background.anchorPoint = CGPoint(x: 0, y: 0)
background.zPosition = Layer.background.rawValue
background.position = CGPoint(x: 0, y: 0)
addChild(background)

// Set up foreground
let foreground = SKSpriteNode(imageNamed: "foreground_1")
foreground.anchorPoint = CGPoint(x: 0, y: 0)
foreground.zPosition = Layer.foreground.rawValue
foreground.position = CGPoint(x: 0, y: 0)
addChild(foreground)

// Set up player
let player = Player()
player.position = CGPoint(x: size.width/2, y: foreground.frame.maxY)
addChild(player)

}

Build and run the project again to make sure things continue to look as
expected.

A Word about Render Order

In Chapter 1, Creating Scenes with Sprites and Nodes, on page
?, you may recall a property named ignoresSiblingOrder. When
ignoresSiblingOrder is set to its default value of false, nodes within a
scene are sorted and rendered in a deterministic order: parents
before children, and then siblings in the order in which they appear
in the node tree.

In contrast, when the ignoresSiblingOrder property is set to true, the
render order is based entirely on a node’s z-position. The default
zPosition property value of a node is 0. While setting ignoresSiblingOrder
= true offers an increase in performance, you must ensure that
each node has its zPosition property set. In cases where two nodes
share the same z-position, their render order is arbitrary and can
change.

For most SpriteKit games, leaving ignoresSiblingOrder = false is recom-
mended unless performance is an issue.

With your player image resources added and your base methods set up, you
have everything in place to animate Blob’s walk cycle.

• Click HERE to purchase this book now. discuss

Control Render Order with Z-Position • 13

http://pragprog.com/titles/tcswift
http://forums.pragprog.com/forums/tcswift

