Extracted from:

Exploring Graphs with Elixir

Connect Data with Native Graph Libraries and Graph Databases

This PDF file contains pages extracted from Exploring Graphs with Elixir, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Pra. ernatic
Ograimmers

R

Exploring Graphs
with Elixir

Connect Data with Native Graph
Libraries and Graph Databases

224n0gS JiX1)3 INOA

Tony Hammond

Series editor: Bruce A. Tate
Development editor: Jacquelyn Carter

Exploring Graphs with Elixir

Connect Data with Native Graph Libraries and Graph Databases

Tony Hammond

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin

COO: Janet Furlow

Managing Editor: Tammy Coron

Series Editor: Bruce A. Tate
Development Editor: Jacquelyn Carter
Copy Editor: Corina Lebegioara
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-840-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 1

Engaging with Graphs

Graphs and graph databases are everywhere. This is no big surprise given
that graphs can address the two main concerns we have in dealing with the
huge volumes of data all around us—organization and scale. Differently from
the more usual “buckets of data” or relational data approaches, graphs can
bring both order and growth to data as data goes large. And they can do this
both organically and holistically. This is what makes graphs such a fascinating
field to work with.

As an organizational pattern, graphs operate at all levels from the smallest
static structures, such as chemical compounds—think of a water molecule—to
large-scale dynamic structures, such as web-based social networks—think
Facebook or Twitter.

Graphs are especially useful in dealing with messy and irregular datasets
and hard-to-fit data. They cope particularly well with sparse datasets. Unlike
the relational model, with fixed tables optimized for transactional database
requests, graphs tend to turn things on their head. Instead of dealing with
objects as sets of relations and then attempting joins over these sets, it is
therelationships between objects that become the chief organizing principle.
It’'s all about the connections rather than the records. Schemas take a
backseat—still incredibly useful but not overly restrictive. We have a much
more fluid way to relate our data items.

With graphs, we are typically working with an open-world assumption and
thus with partial knowledge. We can’t conclude anything definite from missing
data. Any missing data may arrive at any future time. This is in contrast to
more familiar data models which commonly use a closed-world assumption
where everything is known ahead of time and locked down. Those data models
are predictable and provide solid guarantees about data integrity. The down-
side is that they are regimented.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

°6

More simply said, graphs are great at gluing pieces of data together.

Although graph data structures can connect data items, in practice graphs
themselves tend to be disconnected from each other both physically in separate
graph databases and conceptually in terms of data models. To move data
between graphs, it helps to understand their respective data models and how
we can transform data from one graph model to another.

In later chapters, we’ll work with the different graph models and also look at
graph transformations. The graph-to-graph problem is almost as challenging
as the structured-data-to-graph (table or document to graph) problem.

So what’s this book about then? Maybe this concept map (and yes, it's a
graph) can assist in indicating some of the things we’ll explore.

Graphs

\
/ Graphs vs relational
Graph databases
RDF
/

Semantic graphs

EI|X|r \
Transforms

Dlstrlbuted data
Query Ianguages
Native Property graphs \ SPARQL
Gremlin

Concurrent compute
Cypher GraphQL

We'll deal with graphs as structures for organizing data at large. We'll see
how we can use Elixir to process both database graphs and distributed graphs.
We'll focus on the so-called “semantic” graphs—that is, graphs with an
information-bearing capacity. We'll need to consider different graph models,
what they provide, and how they can be related, and we’ll need to work with
different query languages. We'll cover all of these in this book.

First, let’s look into what graphs actually are and also some common paradigms
for graph models. In later chapters, we’ll work with different graph packages
in Elixir, but until then we can try our hand at building a graph with a library
that ships with Elixir. To compare the different graph packages with their
respective graph models, we’ll need a reference graph model. We’'ll define one
here so we can see how these graph models variously deal with this reference
model.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

First Contact ® 7

First Contact

Before going further, let’'s establish some of the terms we’ll be using in this
book. First of all, when we talk about graphs, we obviously mean networks—not
charts. Traditionally the term “graph” has referred to a diagram or plot of one
quantity against another. This is the more widely understood sense of the
term. But that’s not our concern here. We’ll use the term “graph” in its other
sense of a data structure used to model relationships between things. That
is, we have one set of things and another set of relationships between those
things. Those two sets together constitute a graph. In its most general sense,
a graph is a data model for relating a collection of things.

Network vs. Graph

We mentioned the word “network” before. This is the term used

by network science as opposed to “graph,” which is the preferred

term used in graph theory, a branch of mathematics. A network
o is an engineering implementation of a graph. There are other dif-

ferences too. A network is typically a dynamic system concerned

with flows through a structure. A graph, on the other hand, is

typically understood holistically as a static construct.

Vertex/Edge—What?

As noted, there are two components in a graph: things and relationships. In
practice, you'll find many different terms for these graph building blocks:

vertex/edge
terms used by graph theory, a formal theory in math

node/link
terms used in network science theory

node/relationship
terms used by the Neo4j graph database

node/arc
terms used by the RDF graph data model

dot/line
terms sometimes used in graph diagrams

object/arrow
terms used by category theory, a foundational theory in math (a category
is a graph with additional structure)

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

°8

But it doesn’t matter which terms we use. It’s probably best to keep the ver-
tex/edge pairing when dealing with graph theory topics and use the node/ link
pairing when talking about networks. In this book, however, we're going to
use the terms node and edge, although we’ll sometimes also use the term
vertex for node.

Graph Models

Of course, there is more to all this than just nodes and edges. There are code
libraries for modeling graphs and running graph algorithms. There are graph
databases that implement particular graph models. It’s important to establish
now that there are two main graph models which are supported by graph
databases: the property graph model, sometimes referred to as the labeled
property graph, and the RDF model. The following table shows a direct feature
comparison between these two graph models:

Property Graph RDF
sponsor industry W3C
standards no yes
field of origin database documents (web)
published 20077 1999
strength graph exploration data integration

query language Cypher, Gremlin SPARQL

names system global (IRI)

annotations
nodes attributes edges (with string nodes)
edges attributes —

This is obviously an oversimplification of the current position. For example,
although property graphs are not standards-based, there is work ongoing to
surface aspects of the model within various standards bodies. At the same
time, there is the new development of RDF* (with SPARQL*), which seeks to
close the gap between property graphs and RDF graphs by addressing the
edge annotation problem.

But this is all getting ahead of ourselves. We'll look more closely at the different
graph models as we explore the actual graph packages. And we haven’t even
seen a graph yet. So let’s remedy that now.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

Coding a Hello World Graph ¢ 9

Coding a Hello World Graph

As Elixir programmers, it’s only natural to wonder what kind of support Elixir
has for working with graph technologies. Quite a bit as it turns out. A growing
number of Elixir graph packages have been in active development for some
time now, and they are addressing all of the major graph types.

In this book, we're going to develop a project that will allow us to explore some
of the main graph databases, graph query languages, and graph models. We'll
also look at interchanging between graph types and transforming data from
one to another.

But first, let’s try something out of the box—no setup required.

Elixir comes with built-in graph support. We can use the Erlang library :digraph
that ships with the Elixir distribution. Let’s use this to string a couple of
words together. Just fire up Elixir’s interactive shell IEx from the command
line:

$ iex

Erlang/0TP 24 [erts-12.3.1] ...

Interactive Elixir (1.13.4) - press Ctrl+C to exit (type h() ENTER for help)
iex>

Now that we're in IEx, import the :digraph library:

iex> import :digraph

:digraph

iex> g = new

{:digraph, #Reference<0.148244651.2766536707.134565>, ..., true}

iex> vl = add_vertex(g, "Hello")
"Hello"

iex> v2 = add_vertex(g, "World")
"World"

iex> get_path(g, v1, v2)

false

So, here we created a couple of vertices and tried to get the path between
them and, of course, we failed because we haven’t yet defined any edges in
our graph. Let’s fix that and try again:

iex> add_edge(g, v1, v2)

[:"$e” | 0]

iex> get_path(g, v1, v2)
["Hello", "World"]

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

°10

Ah, that’s better. Our very first graph—a “Hello World” graph.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

