
Extracted from:

Exploring Graphs with Elixir
Connect Data with Native Graph Libraries and Graph Databases

This PDF file contains pages extracted from Exploring Graphs with Elixir, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Exploring Graphs with Elixir
Connect Data with Native Graph Libraries and Graph Databases

Tony Hammond

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Series Editor: Bruce A. Tate
Development Editor: Jacquelyn Carter
Copy Editor: Corina Lebegioara
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-840-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 7

Graphing Globally with RDF
While property graphs focus on solving a range of immediate tactical problems,
the RDF graph model focuses on the longer-term strategic goals of large-scale
data integration, especially public data integration. This has been one of the
driving forces behind the semantic web vision.

The Resource Description Framework (RDF) is a data model standardized by
the W3C for describing resources on the web. But note that it’s the descriptions
that are on the web, not necessarily the resources that are being described. This
means that we can use RDF to describe anything, whether it’s online or not.
Put simply, we might say anything that can be named. In fact, we can also
describe unnamed things too. So, “anything” can be described. And these
descriptions are built up using the common web-naming convention—the URI.

Of course, we can also use property graphs to describe things, but here’s the
real kicker. Without any common naming convention, it’s difficult to exchange
any meanings except by some prior arrangement, which means an application
has to keep track of what goes with what, and what means what. With a
common naming system, however, we can freely share our descriptions of
things with others—with no ambiguity. And we can share our meanings too,
which is a crazy big win.

So how does all this work?

The RDF data model describes resources in terms of statements which
can be interpreted as a basic graph structure—a directed labeled graph.
The labels used in RDF graphs are URIs. This is that little bit of magic
that allows one RDF graph to be added to another RDF graph. This leads
to an incredibly simple way of doing data integration. Just add your RDF
datasets together—the names, or labels, that are used will take care of
joining the data elements together.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

By the way, the title of this chapter implies the use of URIs as global names,
which allows for building global data structures. In practice, this also allows
for building out a global graph, which is kind of awesome. More awesome
though is the fact that this global graph already exists in the form of the
linked open data (LOD) cloud1 and is essentially a growing graph of graphs
of open data.

Web Names—A Crib Sheet

URL—Uniform Resource Locator
A web document address

URI—Uniform Resource Identifier
A web identifier for a resource, which may also be located

IRI—Internationalized Resource Identifier
An international form for a URI

RDF is a data model and not a data format, which means that we can write
out an RDF graph in many different ways. There are a number of standard
serializations by the W3C, and these allow for a high degree of interoperability
in reading and writing RDF data. We thus have a standard means of sharing
RDF graphs and can input and output them with ease.

But there is more to RDF than this. We can also define and express standard
schema languages in RDF, and then layer this schema RDF on top of an
existing RDF dataset. This allows us to query over a richer graph of data—one
that has now been augmented with the actual data model that the data con-
forms to. And as the schema languages encode a given logic, we can then
make inferences over the data and add these new inferred statements back
into our graph.

What’s Different About RDF?
RDF is about sharing data—essentially sharing descriptions of things. And
those descriptions are expressed as graphs.

Two of the most notable features of the RDF graph model seen from a graph
perspective are global identity and inference. The first greatly simplifies data
integration and the second helps in building out knowledge graphs.

Let’s talk about each of these.

1. https://lod-cloud.net/

• 6

• Click HERE to purchase this book now. discuss

https://lod-cloud.net/
http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

Integrating Data at Scale
RDF uses web names, or URIs, for identifying the nodes and edges in its data
model. What does that mean? It means everything.

The URI has been a key development in the ongoing integration of the global
telecoms network. It builds on the DNS system for naming computers as
nodes on the (inter)network. By extending it with a network protocol scheme
and a local address on the host system we can identify (and retrieve) docu-
ments using the web. The same URI pattern that we use for documents can
also be used to identify data points within an RDF graph. The thinking here
is that descriptions of things (that is, documents) can be sent in place of the
actual things themselves, which may not be so easy to transmit without Star
Trek transporters to beam them down. So, in principle, information about
any resource (be it physical or abstract) can be returned. We can build out a
global information network.

There’s another benefit to using URIs—namespacing. With namespacing based
on DNS names, we get naming authorities, branding, and trust, and with the
DNS name as the namespace root, we get guarantees of uniqueness. It follows
that we effectively have a commons for developing a shared semantics with
types and properties all globally namespaced. There is now no confusion as
to where names come from.

OK, so far, we’ve talked about sharing data and the semantics for that data,
but we haven’t talked about data integration. Let’s look at the way data inte-
gration happens. If user A makes statements about a subject S, and user B
also makes statements about a subject S, then those sets of statements can
be simply added together because the subject S is the same in both cases.
And we know the subject S is the same because we are using a global name.
What we effectively have with RDF are self-joining datasets based on the use
of URIs, or global names.

Extracting Knowledge from Graphs
Graphs are an excellent choice for representing knowledge bases as they allow
easy and arbitrary connections to be set up between the data items. This
naturally leads to the notion of knowledge graphs.

But knowledge graphs are more than fixed data stores. They generally follow
an open-world model that allows new data to be added as required, and the
shape of the data isn’t constrained as is the case in a relational database.

• Click HERE to purchase this book now. discuss

What’s Different About RDF? • 7

http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

In a sense, they are programmable knowledge stores. New data can be added
from the outside, new data can be generated from the inside, and new inter-
pretations over the data can be made. They are more akin to knowledge
machines.

RDF builds on common standards for naming, which allows for different
datasets to be readily mixed together. Formal reasoning systems from the
knowledge representation communities have been layered on top of the basic
RDF model. RDF datasets can then be modeled according to RDF schemas
(or “ontologies” as they are sometimes called) which are also expressed in
RDF. These RDF schemas are built on a formal semantics and a system of
logic. This means we can reason over the data, deduce logical inferences, and
extract new facts, or statements, which can be added to the dataset. We can
thus “grow” the dataset.

At this point, we should probably take a quick look at the RDF data model
before we get some real experience with generating RDF from Elixir.

RDF Model
An RDF description is built up of a set of RDF statements where each RDF
statement is comprised of a subject, a predicate (or property), and an
object—or, as it is called, an RDF triple. Each RDF triple encodes an RDF
statement. These RDF statements (or triples) are modeled in graph terms as
a node, an edge, and a node as shown in this figure:

:a EX :b:EX

PredicateSubject Object

Triple

:a :b:EX

St
at
em

en
t

G
ra
ph

So, subjects link to objects via predicates (or properties). In our simple graph,
subject :a links to object :b via the predicate (or property) :EX.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

The terms here are all shown in the default namespace (indicated by the
empty prefix before the : separator), but usually, each term will be taken from
its own namespace. Suppose we have an RDF statement such as the following:

ns1:a ns2:EX ns3:b .

Here the namespace prefixes ns1:, ns2:, and ns3: are all paired off with URI
namespaces. Writing that RDF statement out in its full form would give
us this:

<http://ns1.com/a> <http://ns2.com/EX> <http://ns3.com/b> .

Here the <, > brackets mark out a URI.

This is the RDF triple. And an RDF dataset is a set of RDF triples. In fact,
this RDF triple expresses a graph edge between two graph nodes.

Now this RDF triple shows the linkages between things. To add descriptions
to these things, we add strings like this:

ns1:a ns2:EX_NAME "Example name" .

Or, in long form like this:

<http://ns1.com/a> <http://ns2.com/EX_NAME> "Example name" .

These descriptions are encoded as RDF triples, but with the object now as a
string. This is how we add subject attributes in RDF.

Well, right about now, you might want to start coding. Let’s crack on with that.

Creating the RDFGraph Project
To get some experience working with RDF graphs from Elixir, we’ll set up an
RDFGraph project under our umbrella application.

We’re also going to need an RDF graph database for local experiments. We’ll
use the free version of Ontotext GraphDB.2

RDFGraph Project/Database Setup

See Appendix 1, Project Setups, on page ?, for details on retrieving
a working project with code and data.

And see Appendix 2, Database Setups, on page ?, for help on
setting up a local copy of GraphDB.

2. https://www.ontotext.com/products/graphdb/

• Click HERE to purchase this book now. discuss

Creating the RDFGraph Project • 9

https://www.ontotext.com/products/graphdb/
http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

We typically connect to RDF graph databases over the web using SPARQL
endpoints, which is what we’ll do here. SPARQL is the query language for
RDF graphs, and we’ll have more to say about this later.

We could use some help to make building and querying RDF from Elixir eas-
ier. When I first looked around for any hint of an RDF library in Elixir, I was
excited to find the rdf3 package from Marcel Otto,4 which has exceptional
support for working with RDF. He’s also published the sparql5 and sparql_client6

packages for querying RDF, as well as the json_ld7 package for serializing RDF.
Check out the RDF on Elixir8 page for more info.

Without further ado, let’s create a new project RDFGraph. Go to the ExGraphsBook
home project (see ExGraphsBook Umbrella, on page ?), cd down into the apps
directory, and open up the new RDFGraph project:

$ mix new rdf_graph --module RDFGraph

Note that this time we use the --module option to override the default naming
of the module.

We now have an apps directory that looks like this:

.
├── apps
│ ├── graph_commons
│ ├── native_graph
│ ├── property_graph
│ └── rdf_graph➤

Let’s cd into the rdf_graph directory:

.
├── lib
│ └── rdf_graph.ex
├── mix.exs
└── test

└── ...

We’ll declare a dependency on the sparql_client package (from the SPARQL.Client
project) in the mix.exs file. (This will bring in the rdf and sparql package modules

3. https://hex.pm/packages/rdf
4. http://marcelotto.net/
5. https://hex.pm/packages/sparql
6. https://hex.pm/packages/sparql_client
7. https://hex.pm/packages/json_ld
8. https://rdf-elixir.dev/

• 10

• Click HERE to purchase this book now. discuss

https://hex.pm/packages/rdf
http://marcelotto.net/
https://hex.pm/packages/sparql
https://hex.pm/packages/sparql_client
https://hex.pm/packages/json_ld
https://rdf-elixir.dev/
http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

from the RDF.ex and SPARQL.ex projects too.) We’ll also use the hackney HTTP
client in Erlang as recommended:

apps/rdf_graph/mix.exs
defp deps do

[
graph_commons
{:graph_commons, in_umbrella: true},

rdf graphs
{:sparql_client, "~> 0.4"},
{:hackney, "~> 1.17"}

]
end

As usual, use Mix to add in the dependency:

$ mix deps.get; mix deps.compile

We also need to add in the HTTP client:

config :tesla, :adapter, Tesla.Adapter.Hackney

Add these lines to the umbrella config.exs file in the main project directory
or to an environment-specific import (for example, dev.exs).

Finally, let’s wire our graph storage into the RDFGraph module with these use/2
macros:

apps/rdf_graph/lib/rdf_graph.ex
use GraphCommons.Graph, graph_type: :rdf, graph_module: __MODULE__
use GraphCommons.Query, query_type: :rdf, query_module: __MODULE__

Well, that’s our setup. Our plan here is to spend some time first in this
chapter looking at building RDF models, which may not be so familiar, and
then to get into querying RDF graphs with SPARQL in Chapter 8, Querying
RDF with SPARQL, on page ?.

• Click HERE to purchase this book now. discuss

Creating the RDFGraph Project • 11

http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/mix.exs
http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/lib/rdf_graph.ex
http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

