
Extracted from:

Exploring Graphs with Elixir
Connect Data with Native Graph Libraries and Graph Databases

This PDF file contains pages extracted from Exploring Graphs with Elixir, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Exploring Graphs with Elixir
Connect Data with Native Graph Libraries and Graph Databases

Tony Hammond

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Series Editor: Bruce A. Tate
Development Editor: Jacquelyn Carter
Copy Editor: Corina Lebegioara
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-840-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 5

Navigating Graphs with Neo4j
We are now going to turn our attention to property graphs. The property graph
is perhaps the best-known data model for semantic graphs (graphs with an
explicit information superstructure).

Property graphs—also known as labeled property graphs—are graphs in which
both nodes and edges may be attributed properties and in which nodes may
be labeled for grouping.

To study property graphs in a more controlled way, we’ll benefit greatly by
using a database to store our graphs so that we can requery them without
having to rebuild them. And a true graph database—a database that deals
with graphs as first-class data structures—would be even better. Unquestion-
ably, one of the most popular graph databases is Neo4j,1 which was one of
the initial movers in this field. Neo4j has been a major player in driving forward
the current interest in graph databases.

We should call out here a couple of key Neo4j technologies that we’ll be using
for connecting to the database and for querying over the graphs it manages:

• Bolt2 is a high-performance network protocol that was introduced with
the Neo4j 3.0 release in 2016 to speed up database connections. It uses
binary encoding over TCP or web sockets and has built-in TLS support.

• Cypher3 is the declarative graph query language developed by Neo4j and
is now open-sourced to the openCypher4 project. (See the Cypher Refcard5

for a handy quick reference.)

1. https://neo4j.com/
2. https://boltprotocol.org/
3. https://neo4j.com/docs/cypher-manual/current/
4. http://www.opencypher.org/
5. https://neo4j.com/docs/cypher-refcard/current/

• Click HERE to purchase this book now. discuss

https://neo4j.com/
https://boltprotocol.org/
https://neo4j.com/docs/cypher-manual/current/
http://www.opencypher.org/
https://neo4j.com/docs/cypher-refcard/current/
http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

We’re going to use the bolt_sips6 package from Florin Pătraşcu7 that implements
a Neo4j driver for Elixir wrapped around the Bolt protocol. (The package
integrates and continues work from boltex,8 an independent implementation
of the Bolt protocol in Elixir by Michael Schaefermeyer.9)

But before we get to that, let’s first review the property graph model. We’ll
then create a new PropertyGraph project and look at querying with Cypher, and
we’ll also try out the Bolt driver. And then we’ll implement a graph service
for the project using our common graph services API. Lastly, we’ll see how to
switch graph service contexts easily.

Property Graph Model
The distinguishing feature of a property graph is that graph vertices and edges
may be decorated with attributes (or properties). In Neo4j parlance, we talk
about nodes (for vertices) and relationships (for edges).

We’ll discuss property graphs here from a Neo4j perspective.

The graph elements we’ll talk about are nodes, relationships, and paths, along
with their associated IDs, properties, labels, and types. See Graph Database
Concepts10 in the Neo4j documentation for more details.

The following diagram here shows some of these graph constructs:

Paths

T3

T4

T1

T2

Relationships

L2

L2,
L4

L1,
L3

L1,
L3

L1

Nodes

Nodes are shown with optional labels L1, L2, and so on, while the required
single-value relationship types are shown as T1, T2, and so on. Property maps

6. https://hex.pm/packages/bolt_sips
7. https://hex.pm/users/florin
8. https://hex.pm/packages/boltex
9. https://about.me/mschae
10. https://neo4j.com/docs/getting-started/current/graphdb-concepts/

• 6

• Click HERE to purchase this book now. discuss

https://hex.pm/packages/bolt_sips
https://hex.pm/users/florin
https://hex.pm/packages/boltex
https://about.me/mschae
https://neo4j.com/docs/getting-started/current/graphdb-concepts/
http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

are shown with yellow document icons for nodes and green document icons
for relationships. Some various paths are shown between node pairs.

Nodes
Nodes in Neo4j are graph vertices and are allocated a system ID. They may
have zero or more user-defined labels associated with them. Labels are used
for grouping nodes into sets.

Nodes may additionally have a map of property names and property values
associated with them.

Relationships
Relationships in Neo4j are graph edges that relate two nodes and are allocated
a system ID. They take a single user-defined relationship type.

Relationships may additionally have a map of property names and property
values associated with them.

Note that relationships in Neo4j always have a direction that is defined at
create time but may be omitted at query time.

Paths
Paths in Neo4j are sequences of relationships that join sequences of nodes
and are used to answer traversal questions. The sequence of relationships in
the path is always distinct, whereas the sequence of nodes may or may not
be distinct.

One common traversal question is: “What is the shortest path between two
given nodes?” This also brings up the notion of path length. Cypher includes
many handy functions to answer such questions.

Creating the PropertyGraph Project
OK, enough of the theory. Let’s try querying some property graphs for real.
We’re going to need a couple of things: a database and a database driver.

PropertyGraph Project/Database Setup

See Appendix 1, Project Setups, on page ?, for details on retrieving
a working project with code and data.

And see Appendix 2, Database Setups, on page ?, for help on
setting up a local copy of Neo4j.

• Click HERE to purchase this book now. discuss

Creating the PropertyGraph Project • 7

http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

For the database driver, we’ll use the bolt_sips package. We’ll want to create a
new project under our umbrella app. Let’s call this project PropertyGraph. (See
the bolt_sips project for detailed installation instructions.11)

Follow the usual drill for creating the new project, PropertyGraph. Go to the
ExGraphsBook home project (see ExGraphsBook Umbrella, on page ?), cd down
into the apps directory, and open up the new PropertyGraph project:

$ mix new property_graph --sup

This will generate an app with a supervision tree and an application callback.
We’ll use the PropertyGraph.Application module to set up the supervision tree.

You should now have an apps directory that looks like this:

.
├── apps
│ ├── graph_commons
│ ├── native_graph
│ └── property_graph➤

Now cd into the property_graph directory:

.
├── README.md
├── lib
│ ├── property_graph➤

│ │ └── application.ex
│ └── property_graph.ex
├── mix.exs
└── test

└── ...

Note that the --sup flag has generated an extra directory property_graph under lib
with an application.ex file.

We can declare a dependency on bolt_sips by adding the :bolt_sips dependency
to the mix.exs file:

apps/property_graph/mix.exs
defp deps do

[
graph_commons
{:graph_commons, in_umbrella: true},

property graphs
{:bolt_sips, "~> 2.0"}

]
end

11. https://github.com/florinpatrascu/bolt_sips

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/thgraphs/code/apps/property_graph/mix.exs
https://github.com/florinpatrascu/bolt_sips
http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

As usual, use Mix to add in the dependency:

$ mix deps.get; mix deps.compile

We’ll need to specify our connection details:

config :bolt_sips, Bolt,
url: "bolt://localhost:7687",
basic_auth: [username: "neo4j", password: "neo4jtest"]

Add these lines (with details updated as required) to the umbrella config.exs
file in the main project directory or to an environment-specific import (for
example, dev.exs). Note that the url: option uses an explicit bolt: URI scheme.

We’ll also need to start up our PropertyGraph.Application module:

apps/property_graph/mix.exs
def application do

[
extra_applications: [:logger],
mod: {PropertyGraph.Application, []}➤

]
end

The :mod option specifies the application callback module, followed by any
arguments to be passed on application start. The application callback module
is any module that implements the Application behaviour.

We update the start/2 function in lib/property_graph/application.ex as:

apps/property_graph/lib/property_graph/application.ex
defmodule PropertyGraph.Application do

use Application

def start(_type, _args) do
children = [
{Bolt.Sips, Application.get_env(:bolt_sips, Bolt)}➤

]

opts = [strategy: :one_for_one, name: PropertyGraph.Service]➤

Supervisor.start_link(children, opts)
end

end

The application will now be started automatically and can be tested by calling
the info/0 function in Bolt.Sips:

iex> Bolt.Sips.info()
%{

default: %{
connections: %{direct: %{"localhost:7687" => 0}, routing_query: nil},
user_options: [

• Click HERE to purchase this book now. discuss

Creating the PropertyGraph Project • 9

http://media.pragprog.com/titles/thgraphs/code/apps/property_graph/mix.exs
http://media.pragprog.com/titles/thgraphs/code/apps/property_graph/lib/property_graph/application.ex
http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

socket: Bolt.Sips.Socket,
basic_auth: [username: "neo4j", password: "neo4jtest"],
port: 7687,
routing_context: %{},
schema: "bolt",
hostname: "localhost",
pool_size: 15,
max_overflow: 0,
timeout: 15000,
ssl: false,
with_etls: false,
retry_linear_backoff: [delay: 150, factor: 2, tries: 3],
prefix: :default,
url: "bolt://neo4j:neo4jtest@localhost:7687"

]
}

}

Let’s get a database connection:

iex> Bolt.Sips.conn()
#PID<0.352.0>

In direct mode, which is our current configuration, all the operations—read/write
and delete—are sent to the database using a common connection (from a
connection pool). The conn/0 function returns the process ID for this pool
connection.

Finally, let’s wire our graph storage into the PropertyGraph module with these
use/2 macros:

apps/property_graph/lib/property_graph.ex
use GraphCommons.Graph, graph_type: :property, graph_module: __MODULE__
use GraphCommons.Query, query_type: :property, query_module: __MODULE__

Well, that about covers the setup. But before we get into any real querying,
which we’ll cover in Chapter 6, Querying Neo4j with Cypher, on page ?, we’ll
spend the rest of this chapter looking at how to create queries and send them
to the database.

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/thgraphs/code/apps/property_graph/lib/property_graph.ex
http://pragprog.com/titles/thgraphs
http://forums.pragprog.com/forums/thgraphs

