Extracted from:

Build a Binary Clock
with Elixir and Nerves
Use Layering to Produce Better Embedded Systems

This PDF file contains pages extracted from Build a Binary Clock
with Elixir and Nerves, published by the Pragmatic Bookshelf. For more information
or to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Pra ematic

ogrammers

Build a Binary
Clock with Elixir
and Nerves

Use Layering to Produce Better

| S % W

b ; %
s
3 y ¥ 3 y o™ p .
Pttt - Q . I g e g)
o g e

Fran

Hunleth and Bruce A. Tate
edited by Jacquelyn Carter

Build a Binary Clock
with Elixir and Nerves
Use Layering to Produce Better Embedded Systems

Frank Hunleth
Bruce A. Tate

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin

COO: Janet Furlow

Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Copy Editor: L. Sakhi MacMillan
Layout: Gilson Graphics

Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-923-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Adapters Run One System, Three Ways

The first boundary that interacts with hardware is an abstraction layer called
an adapter. These layers let programmers present one interface and multiple
implementations. The goal is to have one program that runs in three places
with as little disruption as possible.

If you wanted to, you could add a bit of compiler safety with a behaviour.'
We're going to leave the behaviour implementation to you. Because Elixir is
a dynamically typed language, all you technically need to do is provide adapter
modules that present functions with the same names and arities.

Each of the adapters will handle a different use case. The test layer needs
individual bits, the hardware layer needs binaries that work with Circuits.SPI,
and the development layer needs to show pretty strings that represent the
clock face.

I took an initial pass at Nerves four years before I wrote this book but had a difficult
time. Teaching OTP and applying the software layering techniques I taught opened
up a whole new world for me. The main lesson was that interfaces allow back ends
for the same system. Establishing interfaces for test, development, and production
made everything click.

The Circuits.SPI interface we’ll use for the target is based on a concept called a
bus. Busses potentially have multiple devices, and a software layer must open
one to interact with it, much like a file in an operating system. That means
each adapter will need a constructor function to open the adapter. Then, each
function will need a converter to present the LED pattern to the user. Let’s
start with the target.

The Target Adapter

We’'ll make the adapters structs so they’ll have the actual module built in as
the _struct_ key.” The target adapter must physically open the bus and send
the bytes representing the clock face. In lib/clock/adapter/target.ex, build the con-
structor first:

1. https://fembedded-elixir.com/post/2018-09-25-mocks-and-explicit-contracts-expansion/

2. https://elixir-lang.org/getting-started/structs.html

« Click HERE to purchase this book now. discuss

https://embedded-elixir.com/post/2018-09-25-mocks-and-explicit-contracts-expansion/
https://elixir-lang.org/getting-started/structs.html
http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

°6

defmodule Clock.Adapter.Target do
defstruct [:time, :spi]
alias Clock.Core
alias Circuits.SPI

def open(bus, time) do
:timer.send_interval(1l_000, :tick)
bus = bus || hd(SPI.bus names())
{:0k, spi} = SPI.open(bus)
% MODULE {time: time, spi: spi}
end

The constructor will need the spi reference and the time. The open/2 function
opens the bus and returns the adapter with the time and spi keys. Next, present
the bytes to the user, like this:

def show(adapter, time) do
adapter
|> Map.put(:time, time)
|> transfer()

end

defp transfer(adapter) do
bytes = adapter.time |> Core.new |> Core.to leds(:bytes)
SPI.transfer(adapter.spi, bytes)
adapter
end
end

We add the time to the adapter, and then send the adapter to a private
function to transfer the bytes via Circuits.SPI using the data we build from the
core. We return the adapter so the server will have the last time presented
for debugging purposes.

Pausing quickly to test this function makes sense:

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

Adapters Run One System, Three Ways ® 7

iex> a = Target.open "bus", Time.utc now |> Target.show(Time.utc now)
%Clock.Adapter.Target{

spi: #Reference<0.862938587.3806461979.14092>,

time: ~T[20:10:31.306738]
}

It appears to be working. Take the time to revel in your work. Build and push
firmware to the target, and you’ll be able to shell out to the Pi and display
the time with LEDs. Do a brief happy dance, and then we’ll build a test layer.

The Test Adapter

The testing adapter will look much like the target one, with a couple of
exceptions. First, there’s no need to open an adapter. Second, rather than
translating bytes, it makes more sense to add the bits to the adapter, so a
test case could conceivably collect a few ticks and check the values using
a strategy called mocking.

The lib/clock/adapter/test.ex file tells the story:

defmodule Clock.Adapter.Test do
defstruct [:time, bits: []]
alias Clock.Core

def open(_bus \\ nil, time \\ Time.utc now) do
% MODULE {time: time}
end

The defstruct across the adapters does not have to match. This one has a bits
part to accumulate consecutive clock readings. There’s no need for a spi key
because we're not connected to hardware, so open/3 simply returns the time
with the default values and moves on.

Now, let’s show the results reducer:

def show(adapter, time) do
adapter
|> Map.put(:time, time)
|> concat

end

defp concat(adapter) do
bits = adapter.time |> Core.new |> Core.to_leds(:none)
%{adapter| bits: [bits| adapter.bits]}
end
end

The only difference is the concat/1 function that tracks bits from the Core in the
adapter accumulator. When you write test cases as an exercise, you’'ll use this

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

°8

bit to click your clock through a couple of cycles and make sure that show is
computing bits correctly.

Testing this adapter means writing a test. Put it in test/adapter_test.exs:

defmodule AdapterTest do
use ExUnit.Case
import Clock.Adapter.Test

test "Tracks time" do
adapter =
open(:unused, ~T[20:13:17.304475])
|> show(~T[01:02:04.0])
|> show(~T[01:02:05.0])

[second, first] = adapter.bits

assert [0, 0, 1| rest] = first
assert [1, 0, 1, O, 0, O, 1| rest] = second
end
end

This is a test of only the Adapter.Test module, but a test of the GenServer would
work the same way. Neither of these adapters is convenient for IEx. A devel-
opment adapter should make it easy to run our project in the console. We’d
like to see messages printed or logged when important things happen. We
don’t care about the hardware because the development mode will run on
the host. Let’s build a development adapter next.

The Dev Adapter

The dev adapter in lib/clock/adapter/dev.ex will be much like the test adapter but
will send a log message rather than adding bits to the console. The ring logger
will allow this adapter to work on the Pi for debugging as well. Let’s see how
it works:

defmodule Clock.Adapter.Dev do
defstruct [:time]
require Logger
alias Clock.Core

def open(_bus \\ nil, time \\ Time.utc_now) do
:timer.send interval(l 000, :tick)
% MODULE {time: time}

end

The struct needs a time, but not the spi key. The spi interface is meaningless
on the host; the hardware is elsewhere. Still, this adapter is a great place to
establish the ticks that will make our GenServer run later. This design will
allow for the target and development environments to have a running

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

Adapters Run One System, Three Ways ¢ 9

GenServer, and the test environment can test the features of the GenServer
by explicitly sending tick messages instead of waiting on automated ticks. That
way, the tests can be faster but still ensure the integrity of the software layer.

Now, let’s see the show/2 reducer.

def show(adapter, time) do
adapter
|> Map.put(:time, time)
|> log

end

defp log(adapter) do
face = adapter.time |> Core.new |> Core.to leds(:pretty)
Logger.debug("Clock face: #{face}")
adapter
end
end

This reducer works like the others. It has a custom function to show the clock
face. The face is primitive, but it can easily be extended later based on the
isolated :pretty formatter in the core. Now try it out:

iex> RingLogger.attach

10k

iex> Clock.Adapter.Dev.open |> Clock.Adapter.Dev.show(Time.utc now)

07:26:20.889 [debug] Clock face: --*-*----------- *odkok kL
%Clock.Adapter.Dev{time: ~T[12:26:20.889926]}

It works, showing a friendly clock representation while the logger is attached.
You can come back and improve the representation later. The important thing
is that we don’t need to unpack the binaries to see whether the bits are off
or on.

Now let’s build the GenServer in the services layer.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

