
Extracted from:

Build a Binary Clock
with Elixir and Nerves

Use Layering to Produce Better Embedded Systems

This PDF file contains pages extracted from Build a Binary Clock
with Elixir and Nerves, published by the Pragmatic Bookshelf. For more information
or to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Build a Binary Clock
with Elixir and Nerves

Use Layering to Produce Better Embedded Systems

Frank Hunleth
Bruce A. Tate

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Copy Editor: L. Sakhi MacMillan
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-923-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Build a Blinker Boundary
This section with an awesomely alliterative title will build a boundary on top
of our LED layer to blink an LED one time, and then multiple times. Rather
than put all of the functionality of our program in one place, we’re going to
separate the parts that know how to communicate with hardware from the
parts that know how to blink. You probably won’t be surprised to learn that
in this section we’re going to use a GenServer.

Bruce says:

Did You Try Turning It Off and On Again?
Customer support representatives are famous for asking users to turn appliances or
devices off and on again. Whether you’re troubleshooting a cable device or a new
electric car, you have likely encountered these instructions.

Elixir’s OTP is a library for running generic services in a way that’s concurent, dis-
tributed, and resilient. Elixir is famous for reliability because of OTP. When services
experience problems, we let them crash and start them in a fresh starting state. OTP
is Elixir’s way of asking, “Did you try turning it off and on again?”

The lib/blinker/server.ex file will have the service boundary, and it will look like
this:

defmodule Blinker.Server do
alias Blinker.LED
defstruct [:led, :on, :ticker]
use GenServer
@pin 26

At the top of each file is a bit of ceremony, but this code is doing a lot of work.
We alias our LED and define the structure that will make up the state of the
GenServer. The led is the representation for a hardware GPIO pin, the :on is
the current state, and the :ticker is a function to send the next blink. You could
imagine this struct having a count integer to track the number of blinks, but
we’ll keep this program simple.

Let’s build the startup machinery, including a constructor to make dealing
with options simple:

def new(opts) do
%__MODULE__{

on: false,
led: LED.open(opts[:pin] || @pin),
ticker: opts[:ticker] || &wait/0

}

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

end

def start_link(opts \\ []) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)

end

def init(opts \\ []) do
send(self(), :blink)
{:ok, new(opts)}

end

def wait, do: Process.send_after(self(), :blink, 1000)

We have a new constructor that creates the state for the GenServer. Notice we
have convenient defaults for every argument but preserve flexibility by making
each option configurable. The start_link/3 function starts the process, naming
it __MODULE__ so we’ll be able to use the Server name instead of the pid. We also
provide the init function to send the initial :blink message and return the initial
state of the GenServer.

The wait/0 function will wait a bit of time before triggering the next :blink. Notice
that we make this function configurable in the :ticker argument because our
tests will be more useful if they don’t always have to send messages or sleep.

Now, let’s provide the API and implementation of the :blink message.

def handle_info(:blink, blinker) do
blinker.ticker.()
{:noreply, blink(blinker)}

end

defp blink(%{on: true}=blinker) do
LED.on(blinker.led)
%{blinker| on: false}

end
defp blink(%{on: false}=blinker) do

LED.off(blinker.led)
%{blinker| on: true}

end
end

The handle_info/2 function processes a single :blink by sending the next blink
message and calling the blink/1 function to do the bulk of the work. The indi-
vidual blink/1 functions match on whether the light is on or off. Then they call
the appropriate LED functions to turn the light off or on and return a new
blinker with a toggled blinker.on field.

It’s a short program with a complex flow, but since we manage the complexity
one layer at a time, the code is remarkably easy to follow.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

Test Drive the Simple Blinker
Let’s fire it up. Start iex -S mix without a target to run on the host, or recompile
if it’s already open. Then exercise the blinker, like this:

iex(2)> alias Blinker.Server
iex(3)> Server.start_link
Opening 26
Off: #Reference<0.4070557734.2003697698.10599>
{:ok, #PID<0.273.0>}
On: #Reference<0.4070557734.2003697698.10599>
Off: #Reference<0.4070557734.2003697698.10599>
On: #Reference<0.4070557734.2003697698.10599>
Off: #Reference<0.4070557734.2003697698.10599>

It works! It’s pretty nice that we can test things without burning firmware
because we’re already confident that our LEDs work. The development time
messages give us reasonable confidence that our blinker is working because
they are triggering the right message at the right time.

Now, you already know how to burn firmware. It’s almost going to be anticli-
mactic because you’ve already verified that you can blink your LED module
from the host and that the LED module can control the physical circuit. With
a MIX_TARGET of rpi0, run mix firmware, run mix upload, and then shell into your
device with mix nerves.local, like this:

Blinker.Server
iex(3)> Server.start_link

And, as shown in the figure on page 8, the light mercifully blinks!

The blinking is simple, but the time honored computer-controlled flashing is
almost enough to make a budding maker weep for joy. It’s time to wrap up.

• Click HERE to purchase this book now. discuss

• 7

http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

