
Extracted from:

Build a Binary Clock
with Elixir and Nerves

Use Layering to Produce Better Embedded Systems

This PDF file contains pages extracted from Build a Binary Clock
with Elixir and Nerves, published by the Pragmatic Bookshelf. For more information
or to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Build a Binary Clock
with Elixir and Nerves

Use Layering to Produce Better Embedded Systems

Frank Hunleth
Bruce A. Tate

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Copy Editor: L. Sakhi MacMillan
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-923-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 5

Build the Clock’s Circuit
This is the part of the project that all hardware lovers crave. You’ll be planning
and building the hardware that will make up the clock. It’s the shortest part
of the book but might take the longest to execute depending on how much
experience you have.

For the first time, we’ll use a constant current LED driver. Since that much
is a mouthful, we’ll sometimes refer to it as a constant current driver, or even
driver. Here’s what it does.

As you work in this chapter, you’ll work inside a new mix project called Clock.
It will have the implementation for the entire binary clock. Like software,
hardware systems are built in layers. The interfaces between the layers make
it easy to isolate services and let engineers focus on one bit of complexity at
any given time. The TLC5947 chip we bought in Chapter 3, Build a Circuit,
on page ? has the constant current driver that will take care of lighting the
LEDs all at once, so all we need to do is attach the LEDs to the TLC5947
board and the TLC5947 board to the Pi.

Here’s what the clock face of our project looks like:

The only user interface the user will see is a series of LEDs. We’ll mount them
in a cabinet by drilling eighteen 5/16-inch holes. Seventeen of the holes will
hold live LEDs and one will be a dead LED that we present for symmetry. The

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

clock will tell time using a binary number system.1 We’ll use one of those
LEDs to represent an AM/PM indicator, six bits for the second and minute
digits, and four bits for the hour.

When we’re done, the user will see only the tips of the LEDs, and we’ll connect
those wires to our device. Let’s plan our attack.

Plan the Hardware
You might be tempted to try to control all of your LEDs from the GPIO pins
from the Pi. The problems with that approach are twofold. First, there might
be too much power for our project to accommodate. Second, the brightness
would probably be uneven, and you might even see some flickering. For this
reason, our days of simple GPIO pins are over for this project.

Instead of hooking up resistors and LEDs to individual pins, we’ll invite an
intermediary onto the scene to control things, like a traffic cop. The Pi will
give the intermediary specific instructions for turning on and off groups of
LEDs and leave it to the traffic cop to carry out the instructions. Our traffic
cop is the standardized interface you first encountered in Chapter 3, Build a
Circuit, on page ?. This chip uses a standardized hardware interface called
SPI, for Serial Peripheral Interface, shown in the following figure.

Each of the holes in the previous figure is a potential connection. The two
rows with two holes each, labeled 0–23, are potential devices. We’ll connect
LEDs to seventeen of them. The two rows of holes on each end represent the
input and output connections. We’ll connect the inputs to the Pi. If you

1. https://www.mathsisfun.com/binary-number-system.html

• 6

• Click HERE to purchase this book now. discuss

https://www.mathsisfun.com/binary-number-system.html
http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

wanted to connect more than the 24 LEDs this project requires, you’d chain
the outputs from this chip to the inputs of another.

Since we only need one chip, we’ll hook up the constant current driver to the
Pi, and the LEDs to the driver, and we’ll tell the driver to do the work through
a library called Circuits.SPI.

That means the hardware side of this project is tedious, but manageable. First,
you’ll prepare the constant current driver that will serve as the traffic cop. You’ll
solder headers to the chip so that you can easily make connections with simple
jumper wires. When you’re done, you’ll have an interface board that’s ready to
accept LEDs and the individual connections to the Raspberry Pi.

Next, you’ll connect the constant current driver to the Pi. This step will go
quickly because the SPI interface our driver uses is a common hardware
interface, so the connections between the chips are well defined. We’ll just
follow a known schematic that tells us precisely which pins on each chip to
connect with jumper wires.

Frank says:

The Value of Datasheets
Working with this constant current driver was great. We didn’t have an exact chip in
mind. We just went to AdaFruit and searched for a constant current driver for LEDs.
Then we downloaded the TLV5947 datasheet, which documented the messages we
needed to make in Elixir. I just had to tell Bruce where to put the standard connections
on the Raspberry Pi and point him at the Circuits.SPI documentation, and everything
worked right out of the box.

Next, you’ll build four individual LED groups representing hours, minutes,
seconds, and AM/PM bits. You’ll use jumper ribbon wires so we can exert
just a little control over the inevitable rat’s nest of wires. It’s a tedious build
because each LED has two wires, and seventeen LEDs means we’re soldering
34 joints. You’ll plug each LED strip onto the header pins you added to the
constant current driver.

Finally, before you build a cabinet and install the LEDs, you’ll test the hard-
ware. When you’re done, you’ll have a completed clock that lacks only working
firmware. Let’s start the hardware assembly with the constant current driver.

• Click HERE to purchase this book now. discuss

Plan the Hardware • 7

http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

Prepare the Constant Current Driver
The TLC5947 will need several connections. There are many ways to solder
together persistent connections. You might decide to solder individual compo-
nents right onto the TLC5947, but that process is error prone, leading to
hard-to-find bugs. Instead, you’ll use a more forgiving approach. You’ll solder
on permanent header pins. That way, you can slide temporary jumper wires
onto those headers to make connections. The compromise is a temporary
connection, but one that’s easy to correct should you make mistakes.

Solder on the Headers
You will need to solder five headers to the board. One six-pin header will
cover the inputs, and two long headers will cover each row of LED connections.
When you’re done, your headers should have long pins protruding from the
side of the board that has the chips.

If you’ve never soldered before, you might want to practice a bit. Try watching
a video2 to get the basics. Make sure you don’t have any extra solder between
the pins that might cause a short.

Start with the short six-pin header. The board comes with two short headers.
You only need one of them. Insert the short pins through the top of the board.
Then, use some masking tape or scotch tape to temporarily hold them in place
while you turn the board over and solder them up. Alternatively, place the
header pins in breadboard, long pins down. Then place the chip upside down
over the header pins. Gravity will hold it all in place as you solder it up.

Next, you’ll solder on the long boards. The long headers will be too long and
will have too many pins. Cut off fifteen or sixteen pins, and remove every
fourth pin to leave four groups of three pins, as in the following figure.

2. https://learn.adafruit.com/how-to-solder-headers

• 8

• Click HERE to purchase this book now. discuss

https://learn.adafruit.com/how-to-solder-headers
http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

Next, insert each of the modified headers into the top of the board, tape them
in place, and solder them up. When you’re done, you should have four rows
of headers running left to right in groups of three, and six pins on your left.

Once you’ve done that much, you’re ready to solder the LEDs to the jumper
ribbons.

• Click HERE to purchase this book now. discuss

Prepare the Constant Current Driver • 9

http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

