Extracted from:

Programming Sound with Pure Data
Make Your Apps Come Alive with Dynamic Audio

This PDF file contains pages extracted from Programming Sound with Pure Data,
published by the Pragmatic Bookshelf. For more information or to purchase a
paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Th
Pr ematic
ogrammers

Programming Sound .+
with Pure Data

Make Your Apps Come Alive 4;/ P
with Dynamic Audio NI

|||||.

ol

H|”|||""||' h |

I ELEE b L e 1 ! H || |||
§13

POPELE LR 0 TR I i I
11
g I
Il
L}
1

0 -
Tony Hillerson
Edited by Jacquelyn Carter

Programming Sound with Pure Data
Make Your Apps Come Alive with Dynamic Audio

Tony Hillerson

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)

Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-93778-566-6

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—January, 2014

http://pragprog.com

CHAPTER 1

Introduction

This is a book about programming sound. Just as in any other programming
book, in this book we’ll cover the technical skills and tools that will enable
you to tell a computer how to do something—namely, make sound. But just
as with any other programming language, good design is important. I don’t
mean visual design; I mean careful thought and practice concerning “how
things work.” So I don’t want you to think about yourself as a sound program-
mer; I want you to think of yourself as a sound designer.

Sound design is a practical art. Sound designers draw on an understanding
of physical phenomena, technical knowledge, and intuition to create sound
experiences. This book is about giving you the technical knowledge and pro-
viding some practical examples that will help you grow your understanding
of how sound works, which will enable you to design and program the sound
you want to hear in the digital experiences you create.

I have a theory: since humans rely primarily on their visual sense—way more
than the other senses, in fact—experiences that involve the other senses have
a greater chance of creating an unexpectedly good experience. Since the
visual part of most digital experiences is so prevalent, it’s surprisingly more
realistic when the other senses are involved.

Digital experiences aren’t heavily tactile yet, besides the mundane input
methods such as typing or mousing, or maybe playing on a game controller
shaped like a guitar. There are interesting new input methods like the Ninten-
do Wii Remote, Microsoft Kinect, Leap Motion device, and so on, but there’s
nothing mainstream that provides tactile feedback. And since Smell-O-Vision
has yet to take off,' the audible experience is the best field within which we

1. http://en.wikipedia.org/wiki/Smell-O-Vision

« Click HERE to purchase this book now. discuss

http://en.wikipedia.org/wiki/Smell-O-Vision
http://pragprog.com/titles/thsound
http://forums.pragprog.com/forums/thsound

Chapter 1. Introduction ® 2

can create that extra, sensory magic in addition to the visual to immerse the
user in the experience.

Before we talk about Pure Data, the language and tools we’ll be working with
throughout the book, let’s discuss a little about sound design and what it
means. Then we’ll take a look at Pure Data from a high level to get oriented
before we dive in and start using it to make sound.

Getting Started with Sound Design

Let’s talk a little about sound design. This is a general overview to give you
an idea of the scope of the field, and to provide a context for the more technical
chapters to follow.

The Sound Designer’s Goals

The digital sound designer may have any of a number of goals when creating
a sound. Sometimes these goals overlap, but in general this is what we want
to achieve in an experience using sound.

Adding Audible Feedback
Adding audible feedback is a common use of sound in digital experiences. Such

feedback could be a clicking sound when the user presses a button, a beep or
bell tone when a task is complete, or a notification when a message arrives.

Fulfilling Expectation

When some event takes place onscreen, it can carry with it the expectation
that if this event happened in the real world, a sound would be part of the
event. In a game, a weapon is fired, a rock falls to the ground, or something
is stretched or struck or thrown. The user expects things to sound a certain
way depending on a lot of factors, such as the realism of the experience and
conventions for similar experiences. Gauging these expectations and designing
to meet them are goals for a sound designer.

Communicating a Mood

Background music in a game is a clear example of sound for communicating a
mood, but it needn’t be only in a game. Think of the startup sound of your com-
puter system of choice. The Windows and Mac startup sounds are designed to
signal an event, but also set the mood for stepping into a fresh, clean session.

Creating Immersion

Immersion may be related to communicating a mood or fulfilling expectations,
such as when getting ambient environment sounds right in a game, but the

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thsound
http://forums.pragprog.com/forums/thsound

Getting Started with Sound Design ¢ 3

goal of immersing the user goes beyond those to creating a believable, emo-
tionally involving experience. The goal is to make the user forget about the
outside world.

Prompting an Emotional Response

Creating an emotional response is related to immersion, but I call it out sep-
arately because there may be a goal to quickly get a response from the user,
maybe with a musical stab, or the scream of a monster from an unexpected
direction, or a sound cue signaling the successful completion of a task.

Types of Sound

Now that you have some possible goals in mind, let’s discuss the kinds of
sounds you may use to reach these goals.

Music

Music is an extremely powerful type of sound. The human response to music is
a mystical one, and even if your interest lies more in creating other types of sound
effects, gaining an understanding of music will help. This book will not cover
music directly, in terms of musical theory or creating musical instruments, but
a lot of the skills we discuss can be applied to musical applications.

Ambience

Ambient sounds are those that occur in the background. These sounds don’t
have to be continuous, but they often are. The effects are there to help with
creating an immersive environment or to fulfill the expectation of a certain
situation. If in a game there’s a scene where the wind is blowing, the user
will expect to hear wind, for instance.

Effects

Non-environmental effects, sometimes called hard effects, are those that occur
in conjunction with an event in the foreground, or somewhere the user’s
attention is expected to be. Such effects include a button click, a door slam,
and a laser blast.

The Sound Designer’s Methods

Given those categories for effects, let’s look at how sound can be created.
Sampling

The easiest way to get a realistic sound is to record it. This is called sampling.

Using a digital recorder out in the field to record the sound of a stream or a
jet flying overhead is a reliable way to capture a sound. Sampling can be done

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thsound
http://forums.pragprog.com/forums/thsound

Chapter 1. Introduction * 4

in a sound studio, too, which offers more control over the environment the
sound is recorded in, but places limits on what kind of sound can be captured.
You can see the tradeoffs between the two.

Sample Library

Recording your own samples can require a fairly extensive investment in
space, time, and equipment. If you've done any work with sound in apps in
the past, you've probably cut out a lot of work and bought a prerecorded
sample library. There’s a number of these professional sound libraries out
there for different budgets, and a number of online services offer various
samples a la carte.

Synthesis

Sound synthesis is the process of constructing sound from fundamental sound
components—sound waves. It really is surprising how realistic sounds can
be when built up from generated sound waves. The complex part isn’t finding
the right sound or environment in the real world, or creating a plausible sit-
uation in a studio, but rather understanding how sound is made well enough
to be able to re-create the sound from scratch using a synthesis environment.
This technique is this book’s focus.

Building Sounds

The techniques described in the preceding sections are all time-tested and
approved. I'm not making any claims that one is the right one—a mixed
approach could be the best, and the needs and budget of each project will
make one or more of them make sense and exclude others. This book is pri-
marily about the exciting possibilities digital synthesis opens to sound
designers, with the ability to both build sounds from scratch and make use
of a sound engine inside the digital experience.

The biggest gain is that of extreme flexibility. If you need the sound of many
different types of explosions, you could try to record many different things
blowing up. If you instead create a sufficiently complex model of an explosion
in a sound-generation application, you can create an infinite number of
variations. It’s even better if that model can be embedded in your application
and react to different parameters controlling the explosion sound—much
more useful than a directory full of explosion samples.

This approach mixes well with the other techniques I've described because
the samples can be manipulated and controlled in the synthesis environment.
That gives new life to your sample library and gives you the option to start

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thsound
http://forums.pragprog.com/forums/thsound

Introducing Pure Data ® 5

with a sample that may be hard to synthesize. A few synthesis applications
are already out there, with a varying amount of complexity, power, and price.
This book focuses on a popular application called Pure Data, which is open
source, free, stable, and very powerful.

In preparation for jumping in and making sound, let’s take a high-level look
at what kind of software Pure Data is and how you interact with it.

Introducing Pure Data

Pure Data, or Pd, as its users call it, is an open source, visual programming
environment for building audio and visual experiences. It was created in the
1990s by Miller Puckette, and grew out of the ideas behind a previous creation
of Miller’s called Max, which is still available as a commercial product. The
Pure Data website is http://puredata.info.

Pd is part of a class of programming languages and environments that deal
with procedural audio, or creating sound from routines that generate or
modify streams of numbers that will eventually be sent to hardware to produce
audio that we can hear.

Pd Is Visual

Pd is a visual programming environment, which means while using it you
don’t write code as such, but instead manipulate visual objects on the screen,
connecting them into a system that produces some desired effect. The visual
objects are technically called atoms, but we’ll use more specific names for
them as we talk about them. Each atom has a particular job, whether to send
a message to other atoms, hold a number, or configure and control an object
from a core library of objects or third-party extensions and abstractions.

A Pd file is called a patch and has the extension .pd. A patch is a textual data
file containing information about how atoms are connected, how theyre
configured, and sometimes data that they can read from.

When we open a patch in Pd a graphical representation of the patch is dis-
played in its own window. Atoms can be moved around the screen, connections
can be made, values can be adjusted, and so forth. The work area inside the
window is called a canvas. All Pd programming happens in this visual envi-
ronment. We’ll spend a lot of time going through patches, often looking at
images directly taken from Pd patches. Early in the book we’ll walk through
building patches from scratch, and later we’ll switch to a more descriptive,
explanatory style, but remember that all the patches described in the book
are in the code download in the pd directory.

« Click HERE to purchase this book now. discuss

http://puredata.info
http://pragprog.com/titles/thsound
http://forums.pragprog.com/forums/thsound

Chapter 1. Introduction ® 6

\/ Joe asks:

—~

7 Can | Edit Patches or Put Them in Source Control?

Although patches are simply text files, It would be a bit of a stretch to call them
human-editable. They should be viewed as data files.

Merging changes with those of a colleague is most likely impossible, so to work with
Pd in a team environment, either have Git treat Pd files as binary files or deal with
conflicts in another way. Making good use of abstractions will help here. Refer to
Git's documentation or that of your favorite source-control program for more
information.

One of the great things about Pd’s visual design is that the graph shown in
the patch (as in the figure here) is everything you need to know about how
to reproduce the patch and understand the flow of the audio through the
system. The information density of a picture of a patch is very high, and just
looking at it makes explaining the patch’s inner workings much easier than
if we had only code to look at.

Pd-extended File Edit Put Find Media Window Help BORNCP@UE . D+ @FTEe O QS
666 plar.scratch.p

B10. s

ile1d
EMVELOPING THE LODPING SAMPLER

] <= Frogquency (Hz.)

44103 samples

grophiy

a second)

- 1 second ------
-1

—a

nip- &

I_gc-\-: <= record

tobweite- tobleld

Jeesbang
1.
v-- re-reod the originel somle

cundivaice, mav tebleld

greeh19 yigbel 48000 © 44108
wpdated for Pd version 9.37

Pd Is Modular

Pd is great for learning how to build sounds because the visual programming
environment makes it easy to communicate what’s going on. It continues to
be a powerful tool long after you start being productive, too, thanks to its

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thsound
http://forums.pragprog.com/forums/thsound

Installing Pd * 7

modular design. It’s easy to create abstractions at whatever level of complex-
ity you need. These abstractions can themselves contain abstractions and so
on, allowing the Pd programmer to gain a lot of control over and reusability
of component pieces of a patch. The abstractions can be stored in a patch or
in a separate file.

If Pd doesn’t do something you need it to, you can write extensions in C. There
are sound-processing extensions, visual libraries for art installations, inter-
faces between popular hardware controllers, and awesome stuff like Arduino
and Raspberry Pi integration.

Pd Is Embeddable

Since in this book we're focused mostly on audio for web and native applica-
tions, one of the coolest things we’ll do with Pd is embed Pd patches in native
apps using the excellent libpd.” This will allow us to put dynamic, procedural
audio directly into our apps and build a domain-specific language around
the audio experience. When I first heard that was possible I nearly jumped
up and danced. Not a pretty sight. That means Pd is a ready-made embeddable
synthesizer engine for your native apps!

So, although Pure Data is only one of many ways to create and produce
sounds that you design, it’s a very powerful and useful tool to have in your
sound-design tool belt.

Installing Pd

You can find installation instructions at the Pure Data website,? but which
version should you install? There are two: the original version maintained by
Miller, lovingly called Pd Vanilla, and Pd Extended. Pd Extended is easier to
install, and comes with a number of third-party extensions, including sound-
processing tools and effects. Patches created with extensions from Pd
Extended will not run in Pd Vanilla unless the extensions are added to Pd’s
Vanilla’s path, but otherwise they are almost completely compatible. As of
this writing Pd Vanilla was at version 0.44, with 0.45 right around the corner.
Pd Extended was using Pd 0.43 under the hood.

All of the patches in this book were created with Pd Extended, but I've kept
away from any extensions that don’t ship with Pd Vanilla—with one notable
exception, the output~ object. I'll make note of it again when we first use it.

2. http://libpd.cc/

3. http://puredata.info

« Click HERE to purchase this book now. discuss

http://libpd.cc/
http://puredata.info
http://pragprog.com/titles/thsound
http://forums.pragprog.com/forums/thsound

Chapter 1. Introduction * 8

If you choose to use Pd Vanilla, there should be no issue with the patches in
this book. If you use any of the third-party extensions that ship with Pd
Extended, keep in mind that libpd, which we use to embed Pd in native apps,
is a wrapper around Pd Vanilla. You'll need to track down and include any
extensions you use alongside your patch.

Other Software

It’s not necessary to have any other software for this book, but it might be
useful. In a few cases I've included screenshots showing some audio-file
analysis in my favorite audio editor, Adobe Audition.* A free, open source
alternative is Audacity.’ You're definitely going to want a full-featured audio
editor, and either of these is a good choice.

In the final chapters of the book we’ll go through two projects: a web game
and a task-management app built for Android and iOS. Although you could
learn a lot from the discussion in these chapters covering the Pure Data part
alone, to get the most from the code you'll need a good text editor for the web
code, Eclipse for the Android project,® or Xcode for the iOS project.”

Let’s Get Started

You're beginning (or perhaps continuing) an exciting journey toward being
able to design the sound you want to hear, which will give realism, emotional
depth, and that extra dimension to make your apps and games come alive.

Sound is an immense field. Unbelievably immense. This book is meant to be a prac-
tical, hands-on primer. I try to explain enough theoretical background to help make
sense of what’s going on when we come across a new concept, especially in the next
chapter. If the theoretical parts leave you confused or asking more questions, use
them as jumping-off points for further study—Wikipedia is a great place to start.

Now that you have a general idea of what we want to accomplish in this book,
what the sound designer’s goals are, and how we can use Pure Data to
accomplish them, let’s get started with Pd and make some noise.

http://www.adobe.com/products/audition.html

N ook

« Click HERE to purchase this book now. discuss

http://www.adobe.com/products/audition.html
http://audacity.sourceforge.net/
http://eclipse.org
http://developer.apple.com
http://pragprog.com/titles/thsound
http://forums.pragprog.com/forums/thsound

