Extracted from:

Programming Sound with Pure Data
Make Your Apps Come Alive with Dynamic Audio

This PDF file contains pages extracted from Programming Sound with Pure Data,
published by the Pragmatic Bookshelf. For more information or to purchase a
paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Th
Pr ematic
ogrammers

Programming Sound .+
with Pure Data

Make Your Apps Come Alive 4;/ P
with Dynamic Audio NI

|||||.

ol

H|”|||""||' h |

I ELEE b L e 1 ! H || |||
§13

POPELE LR 0 TR I i I
11
g I
Il
L}
1

0 -
Tony Hillerson
Edited by Jacquelyn Carter

Programming Sound with Pure Data
Make Your Apps Come Alive with Dynamic Audio

Tony Hillerson

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)

Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-93778-566-6

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—January, 2014

http://pragprog.com

It’s time to have some fun. In this chapter we’ll start to apply what we know
about Pd and use the tools we've built to create some sound effects. The
sounds are relatively simple to create, but are surprisingly realistic for the
amount of work it takes to create them.

We'll start with the simplest patch, simulating waves with white noise, a filter,
and a low-frequency oscillator (LFO). Then we’ll build up a bit with a patch
simulating wind with noise in both the signal and control domains, and an
envelope for more control. Finally, we’ll do our first more technical sound
analysis by looking at a recording of a wineglass being tapped, and then
reproducing the sound it makes.

When you are done with this chapter, you will

¢ Understand what noise is, and how it can be used

¢ Know how to shape sound the way you want

¢ Know the principles behind two types of synthesis: subtractive and additive
e Have a basic understanding of sound analysis

Each section in this chapter follows the pattern of a general description of
the sound we want to make, an analysis of what’s going on in the sound in
the real world, the approach we’ll take in Pd to reproduce the sound, and a
discussion of the patch. From now on we’ll start with completed patches or
subpatches and break them down instead of talking through building the
patches step by step.

Let’s get started by making a simple patch that reproduces the sound of waves
at a beach.

Waves

The sound of waves at a beach is a nice, calming sound, and is a great one
for our first shot at designing environmental ambience. If you've ever been to
the beach, you can probably recall the waves as an undulating, mellow,
hissing sound that repeats over and over. It depends a bit on the makeup of
the beach, but the common element is the water.

I remember visiting a beach, French Beach, in British Columbia. The beach
there isn’t sand; it’s made up of fist-sized rocks, and as the waves rolled in
and out they made this wonderful tocking sound multiplied countless times
by the sheer number of the rocks that added an uncommon and interesting
element to the waves. I'd love to be able to capture and analyze that sound.
For our purposes, though, let’s consider a sandy beach—it’s familiar and
relatively easy to approximate with some simple tools in Pd, so it's a great
place to start practicing sound design. Let’s begin with a simple analysis.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thsound
http://forums.pragprog.com/forums/thsound

*6

Analysis

The first thing to note about waves is their periodic nature. That’s one of the
reasons they have such a lulling effect on you as you sit on the beach—the
regularity of the sound of the water building up forward motion, reaching up
the beach, and then flowing back down the sand into the body of water over
and over again.

The second thing to note is the materials involved. The effect of water flowing
around and through itself and over and around the material of the beach is
a complex physics problem to describe, involving hydrodynamics and a whole
set of interesting theorems. Our model doesn’t have to take that deep of an
approach, though, because the sonic effect of all this activity can be simulated
with noise. In sound production, noise has a more specific definition than we
use in day-to-day speech; it means some sort of random signal.

Noise is classified into different colors, drawing an analogy between sound
and light and the distribution of energy across the visible spectrum. White
noise is a random signal with a uniform distribution across all frequencies.
For comparison, there is also pink noise, with the frequencies weighted toward
the lower end, and blue noise, with the frequencies weighted toward the
higher end of the spectrum. Because of the way our ears perceive sound,
white noise sounds higher-pitched than you might expect from the even fre-
quency distribution. Most times you hear noise in this technical sense you're
probably hearing about white noise. This is the case in Pd, so we’ll stick with
“noise” instead of “white noise.”

Noise is close to the spectrum of water flowing in and around sand while the
grains of sand raise and settle, bumping into each other. The spectrum of a
signal is the distribution and strength of the frequencies in the signal, and
reproducing the spectrum of a sound is the greater part of reproducing the
sound.

Approach

We’ll model the sound of waves on a beach by doing the following:

e Using an LFO to model the timing
¢ Using a noise generator to model the spectrum

Pd supplies us with an easy way to make white noise. Unprocessed white
noise sounds unnatural, so we’ll tune it to our taste using a filter, which
removes frequencies from a signal. Since we don’t have any more specific

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thsound
http://forums.pragprog.com/forums/thsound

Waves ¢ 7

requirements for reproducing the sound of waves, we're free to apply a filter
and then adjust it until it sounds right.

The Patch

Create a new patch named waves.pd and save it. Reproduce the patch shown
in this figure.

../BuildingControls/lfo~

rate depth
L 1 C 1

S
)

=

= =
noise~ =0.05 Hz =100

I 20 Seconds

* A

Lo

lop~ 50

T

output~
vqunI\e dsp

First, note that the sample code has this patch in a sibling directory to the
directory containing the patches from the last chapter, including the Ifo~.pd
subpatch. Pd will load subpatches from relative paths, and in this case the
path to the subpatch is ../BuildingControls/lfo~.pd. You can either use the relative
path to the LFO subpatch from your system or copy the subpatch into the
same directory as this patch and refer to it as Ifo~. The LFO is then connected
to a *~ to regulate the amplitude of the noise.

The aptly named noise~ object connected to the other side of the *~ generates
white noise. The lop~ between the *~ and the output~ is a filter to tune the noise
a bit. “Lop” stands for low-pass filter, which is a filter that cuts off frequencies
above a given frequency, which it takes as a numeric argument, and allows
lower frequencies to pass through and remain in the signal. In the figure the
lop~ has a relatively low cutoff frequency, but try different ones out and see
what you think.

The period of the waves can be controlled with the rate of the LFO, but notice
how rates of less than 10 seconds start to sound unnatural. The depth of the
LFO is also subtly important to the effect; a depth of 100% sounds unnatural
because waves rarely become completely silent. Try something between 75%
and 80%.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thsound
http://forums.pragprog.com/forums/thsound

*8

Experiment and play around: imagine the sound of seagulls and boats in the
background, or perhaps children laughing and playing, and you can see how
amazing it is that some basic building blocks can produce realistic sounds.
Next we’ll explore using noise a bit more as we reproduce the sound of wind.

Wind

Wind, too, is a great ambient effect that’s relatively easy to reproduce using
synthesis. Let’s consider what kind of wind we want to reproduce. To get the
most out of the effect let’s make it a fairly windy day in something like a grassy
field with a few trees, so we’ll hear a breeze with light gusts every now and
again, but sometimes experience stronger, more steady gusts. We’ll make it
so that the stronger gusts are controllable, which could be useful to tie to
some event taking place on a game screen, for instance.

Analysis

As with the waves patch, this analysis is intuitive rather than scientific. The
method of reproducing wind is similar to waves in that white noise can
reproduce the spectra created by the chaotic flow of air around materials of
different shapes.

One big difference is that wind is nonperiodic, unlike waves on a beach. Wind
blows harder, then softer, with gusts at unpredictable times. One last thing
to note is that wind is a subtler sound than waves, so we’ll want to use a
more drastic filter to pick out the frequencies we want to be in the signal.

Approach

Let’s consider the structure of the patch in both the signal and control
domains.

Signal Domain

As with waves, the signal domain will be based on noise. To get the spectrum
we want we’ll use a bp~, Pd’s band-pass filter. Whereas a low-pass filter allows
only frequencies below a certain frequency to pass through, a band-pass filter
allows only frequencies a certain distance around a given frequency, which
are called the passed band. Band-pass filters usually have a parameter called
©, which controls the width of the passed bands in an inverse relationship,
so higher Q values pass a narrow band and lower values pass a wider band.

Control Domain

We have two goals in the control domain for this patch:

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thsound
http://forums.pragprog.com/forums/thsound

Wind ¢ 9

¢ A steady, quiet wind with small, random gusts
e A way to control and produce louder gusts for a period of time

We'll control starting and stopping the wind and producing the louder gusts
with an ADSR (attack, decay, sustain, and release) envelope. That part is
much like the test patch we made last chapter. The small, random gusts are
a little more tricky. We need some way to introduce randomness into the
control domain.

Luckily, we don’t have to look far, because that’s exactly what noise is: a
random signal. So we’ll use noise~ objects in both the signal and control
domains, one for the wind sound and one to produce gusts, which are just
small amplitude jumps to the signal. We’'ll also use a series of filters to regulate
how much effect the control noise has.

We'll split the patch into the wind-making mechanism and the controllable
part by using a subwindow, or internal subpatch: a subpatch that’s not stored
in a separate file, but rather in the patch itself.

The Patch

First let’s work on the main patch. Create a patch in the same directory as
waves.pd and call it wind.pd. Then create an adsr~ either by copying the one we
made to the same directory or by referring to it with a relative path. Connect
the adsr~ to a *~ and both sides of the *~ to an output~. You should have
something like in Figure 7, The Main Patch for Wind, on page 10.

The left side of the *~ has a new type of object connected to it, called pd wind.
Create this now. Notice that once you click away from editing the object, Pd
automatically opens a new window for you. This syntax creates a subwindow.

Subpatches and subwindows are both great ways to build some abstraction
into your patches and focus on the various responsibilities of the different
parts of a patch. In this way, Pd is like any other programming language.
Subwindows are just like subpatches, but you create subwindows when the
function you want to perform is specific to the current patch, and subpatches
in separate files when you want to build a reusable component.

The wind subwindow looks like Figure 8, The Wind Subwindow, on page 10.

The left side of the window under the comment “Wind signal” starts off with
a noise~ object connected to a bp~. This is the band-pass filter discussed ear-
lier. The arguments 800 1 correspond to the center frequency of the filter, 800
Hz, and the @ of the filter, 1. This is a low Q value, which means the band is
fairly wide. Here again, 800 Hz sounds fairly good as the center band, but it’s

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thsound
http://forums.pragprog.com/forums/thsound

*10

pd wind receive envelope

= = = = =
../BuildingControls/adsr~ 1 3000 10000 30 5000

Press to start or swell the breeze
=

7

envelope 1

=

Press to fade the breeze out
=

envelope 0

dsp = 5

volume

Figure 7—The Main Patch for Wind

wind
Gust control
Wind signal P
noise~
= I
T aa~ =
noise Top~ I
I _ _ = -
bp~ 800 1 op~ T~
| —
*~ 5
I _
+~ 0.2

2 Turn on "debugging"
=
0

metro 50

outlet~ snapshot~

tabwrite~ wind
0.180226
=

Gust value
Figure 8—The Wind Subwindow

not scientifically chosen. Play around with different frequencies and Q values

to get an idea of how they sound.

The signal comes out of the bp~ and into a *~ so we can vary it with the control
signal simulating random gusts. That signal chain also starts out with a

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thsound
http://forums.pragprog.com/forums/thsound

Wind ¢ 11

noise~, but then we pass the signal through a series of very drastic lop~ filters
set to 1 Hz. Filters don’t lop the sound off (pun intended) directly at the filter
frequency, but rather they have a curve to them, so using two filters in series
like this makes the cut-off steeper than using one. These filters keep out
almost all of the signal from the noise~ object so that only a very subtle signal
gets through. It’s so subtle that we have to increase the magnitude by 5 with
a *~ to get it in a range where the effect will be noticeable.

We don’t ever want the control signal to reach O, because that would stop the
sound of the wind. To avoid that we add 0.2 to the control signal with a +~.
The control signal is connected to the right side of the *~ to regulate the signal
from the left side.

So that we can see what’s going on, there is also a graph of an array called
wind, a snapshot~ of the control signal fed to a number, and a metro 500 controlled
by a check box, which you can turn on to debug the patch. When the patch
is running, watch the gust value and notice the small amount of amplitude
regulation.

The randomly regulated signal is sent through the outlet~ and back to the
main patch. There, the message boxes containing envelope 1 and envelope 0
require a little explanation. This syntax where the message contains a semi-
colon (;) followed by a new line is a way of broadcasting a named value. To
understand this better, consider the receive envelope object connected to the
adsr~. When you press the message containing envelope 1, Pd sets a global
variable named envelope to the value 1, and any receive objects with an argument
envelope will be triggered, sending the value of envelope to their outlets. The
same goes for the message containing envelope 0.

The 1 and O values sent to the receive connected to the adsr~ serve to trigger
and stop the envelope, which starts and stops the wind. Note the arguments
to the adsr~, in order:

e 1—An attack value of 1 means that the attack portion of the envelope will
reach 1.

e 3000—This attack rate in milliseconds means the attack portion of the
envelope will take 3 seconds.

¢ 10000—The envelope decay will take 10 seconds.
e 30—The sustain value will be 30% of the attack value, or 0.3.

e 5000—The envelope will stay at 0.3 indefinitely until it receives a O, when
it will take 5 seconds to reach O.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thsound
http://forums.pragprog.com/forums/thsound

*12

And that’s our wind patch! Try it out; click the envelope 1 message and listen
to how the wind swells and then drops. Listen to how there are small gusts
blowing through randomly. Then when you want a larger sustained gust press
the envelope 1 message again. Remember that this could be controlled inside
of a game to coincide with wind control that also affects what the player sees
on the screen. When you want the wind to fade out, press the envelope 0
message.

Next we’ll take a little bit more time to analyze a real-world sound and
reproduce it. But before we do, let’s take a moment to talk about a little theory
behind what we’re doing here.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thsound
http://forums.pragprog.com/forums/thsound

