
Extracted from:

The Definitive ANTLR Reference
Building Domain-Specific Languages

This PDF file contains pages extracted from The Definitive ANTLR Reference, published

by the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2007The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Chapter 10

Error Reporting and Recovery
The quality of a language application’s error messages and recovery

strategy often makes the difference between a professional application

and an amateurish application. Error recovery is the process of recov-

ering from a syntax error by altering the input stream or consuming

symbols until the parser can restart in a known state. Many hand-built

and many non-LL-based recognizers emit less than optimal error mes-

sages, whereas ANTLR-generated recognizers automatically emit very

good error messages and recover intelligently, as shown in this chap-

ter. ANTLR’s error handling facility is even useful during development.

During the development cycle, you will have a lot of mistakes in your

grammar. The resulting parser will not recognize all valid sentences

until you finish and debug your grammar. In the meantime, informa-

tive error messages help you track down grammar problems. Once you

have a correct grammar, you then have to deal with ungrammatical sen-

tences entered by users or even ungrammatical sentences generated by

other programs gone awry.

In both situations, the manner in which your parser responds to un-

grammatical input is an important productivity consideration. In other

words, a parser that responds with “Eh?” and bails out upon the first

syntax error is not very useful during development or for the people

who have to use the resulting parser. For example, some SQL engines

can only tell you the general vicinity where an error occurred rather

than exactly what is wrong and where, making query development a

trial-and-error process.

A PARADE OF ERRORS 244

Developers using ANTLR get a good error reporting facility and a sophis-

ticated error recovery strategy for free. ANTLR automatically generates

recognizers that emit rich error messages upon syntax error and suc-

cessfully resynchronize much of the time. The recognizers even avoid

generating more than a single error message for each syntax error. New in v3.

This chapter describes the automatic error reporting and recovery strat-

egy used by ANTLR-generated recognizers and shows how to alter the

default mechanism to suit your particular needs.

10.1 A Parade of Errors

The best way to describe ANTLR’s error recovery strategy is to show

you how ANTLR-generated recognizers respond to the most common

syntax errors: mismatched token, no viable alternative, and early exit

from an EBNF (. . .)+ subrule loop. Consider the following grammar for

simple statements and expressions, which we’ll use as the core for the

examples in this section and the remainder of the chapter:

Download errors/E.g

grammar E;

prog: stat+ ;

stat: expr ';'

{System.out.println("found expr: "+$stat.text);}

| ID '=' expr ';'

{System.out.println("found assign: "+$stat.text);}

;

expr: multExpr (('+'|'-') multExpr)*
;

multExpr

: atom ('*' atom)*
;

atom: INT

| '(' expr ')'

;

ID : ('a'..'z'|'A'..'Z')+ ;

INT : '0'..'9'+ ;

WS : (' '|'\t'|'\n'|'\r')+ {skip();} ;

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/tpantlr/code/errors/E.g
http://www.pragmaticprogrammer.com/titles/tpantlr

A PARADE OF ERRORS 245

And here is the usual test rig that invokes rule prog:

Download errors/TestE.java

import org.antlr.runtime.*;

public class TestE {

public static void main(String[] args) throws Exception {

ANTLRInputStream input = new ANTLRInputStream(System.in);

ELexer lexer = new ELexer(input);

CommonTokenStream tokens = new CommonTokenStream(lexer);

EParser parser = new EParser(tokens);

parser.prog();

}

}

First run some valid input into the parser to figure out what the normal

behavior is:

⇐ $ java TestE

⇐ (3);

⇐ EOF

⇒ found expr: (3);

$

Upon either expression statement or assignment statement, the trans-

lator prints a message indicating the text matched for rule stat. In this

case, (3); is an expression, not an assignment, as shown in the output.

Now, leaving off the final), the parser detects a mismatched token

because rule atom was looking for the right parenthesis to match the

left parenthesis:

⇐ $ java TestE
⇐ (3;

⇐ EOF

⇒ line 1:2 mismatched input ';' expecting ')'

found expr: (3;

$

The line 1:2 component of the error message indicates that the error

occurred on the first line and at the third character position in that line

(indexed from zero, hence, index 2).

Generating that error message is straightforward, but how does the

parser successfully match the ; and execute the print action in the first

alternative of rule stat after getting a syntax error all the way down in

atom? How did the parser successfully recover from that mismatched

token to continue as if nothing happened? This error recovery feature

is called single token insertion because the parser pretends to insert the

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/tpantlr/code/errors/TestE.java
http://www.pragmaticprogrammer.com/titles/tpantlr

A PARADE OF ERRORS 246

missing) and keep going. We’ll examine the mechanism in Section 10.7,

Recovery by Single Symbol Insertion, on page 260. Notice that with mul-

tiple expressions, the parser successfully continues and matches the

second alternative without error:

⇐ $ java TestE

⇐ (3;

⇐ 1+2;
⇐ EOF

⇒ line 1:2 mismatched input ';' expecting ')'

found expr: (3;

found expr: 1+2;

$

ANTLR also avoids generating cascading error messages if possible.

That is, recognizers try to emit a single error message for each syntax

error. In the following sample run, the first expression has two errors:

the missing) and the missing ;. The parser normally emits only the first

error message, suppressing the second message that has the [SPURIOUS]

prefix:

⇐ $ java TestE

⇐ (3
⇐ a=1;

⇐ EOF

⇒ line 2:0 mismatched input 'a' expecting ')'

[SPURIOUS] line 2:0 mismatched input 'a' expecting ';'

found expr: (3

found assign: a=1;

$

Another common syntax error occurs when the parser is at a deci-

sion point and the current lookahead is not consistent with any of the

alternatives of that rule or subrule. For example, the decision in rule

atom must choose between an integer and the start of a parenthesized

expression. Input 1+; is missing the second operand, and rule atom

would see ; instead, causing a “no viable alternative exception:”

⇐ $ java TestE

⇐ 1+;

⇐ EOF

⇒ line 1:2 no viable alternative at input ';'

found expr: 1+;

$

The parser successfully recovers by scanning ahead to look for a symbol

that can follow a reference to atom or a rule that has invoked atom. In

this case, the ; is a viable symbol following a reference to atom (and

therefore expr). The parser consumes no tokens and simply exits from

atom knowing that it is probably correctly resynchronized.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/tpantlr

ENRICHING ERROR MESSAGES DURING DEBUGGING 247

Back When You Could Almost Parse C++

In the early 1990s, I was consulting at NeXT and was helping
Sumana Srinivasan build a C++ code browser using ANTLR v1
(ANTLR is still used in NeXTStep, er, Mac OS X today). The man-
ager, Steve Naroff, insisted that the ANTLR-generated parser
provide the same high-quality error messages as his hand-built
C parser did. Because of this, I introduced the notion of parser
exception handling (the analog of the familiar programming
exception handling) and created a simple single-token dele-
tion mechanism. Ironically, the ANTLR-generated C++ recog-
nizer emitted better messages in some circumstances than the
hand-built parser because ANTLR never got tired of computing
token sets and generating error recovery code—humans, on
the other hand, often get sick of this tedious job.

You will also run into early subrule exit exceptions where a one-or-more

(. . .)+ subrule matched no input. For example, if you send in an empty

input stream, the parser has nothing to match in the stat+ loop:

⇐ $ java TestE
⇐ EOF

⇒ line 0:-1 required (..)+ loop did not match anything at input '<EOF>'

$

The line and character position information for EOF is meaningless;

hence, you see the odd 0:-1 position information.

This section gave you a taste of ANTLR’s default error reporting and

recovery capabilities (see Section 10.7, Automatic Error Recovery Strat-

egy, on page 258 for details about the automatic error recovery mech-

anism). The next few sections describe how you can alter the standard

error messages to help with grammar debugging and to provide better

messages for your users.

10.2 Enriching Error Messages during Debugging

By default, recognizers emit error messages that are most useful to

users of your software. The messages include information only about

what was found and what was expected such as in the following:

line 10:22 mismatched input INT expecting ID

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/tpantlr

ENRICHING ERROR MESSAGES DURING DEBUGGING 248

Unfortunately, your grammar has probably 200 references to token ID.

Where in the grammar was the parser when it found the INT instead

of the ID? You can use the debugger in ANTLRWorks to set a break-

point upon exception and then just look to see where in the grammar

the parser is. Sometimes, though, sending text error messages to the

console can be more convenient because you do not have to start the

debugger.

With a little bit of work, you can override the standard error reporting

mechanism to include information about the rule invocation stack. The

invocation stack is the nested list of rules entered by the parser at any

given moment, that is, the stack trace. You can also add more informa-

tion about the mismatched token. For no viable alternative errors, you

can do even more. For example, the following run illustrates a rich, no

viable alternative error message that is much more useful for debugging

grammars than the default:

⇐ $ java TestE2

⇐ 1+;

⇐ EOF

⇒ line 1:2 [prog, stat, expr, multExpr, atom] no viable alternative,

token=[@2,2:2=';',<7>,1:2] (decision=5 state 0)

decision=<<35:1: atom : (INT | '(' expr ')');>>

found expr: 1+;

$

The message includes a rule invocation stack trace where the last rule

mentioned is the rule the parser was in when it encountered the syn-

tax error. The error includes a detailed report on the token itself that

includes the token index, a character index range into the input stream,

the token type, and the line and character position within the line.

Finally, for no viable alternative exceptions such as this, the message

includes information about the decision in a grammar: the decision

number, the state within the decision’s lookahead DFA, and a chunk

of the grammar that describes the decision. To use the decision and

state information, turn on ANTLR option -dfa, which will generate DOT

(graphviz) descriptions you can display. Filenames are encoded with the

grammar name and the decision number, so, for example, the DOT file

for decision 5 of grammar E is E_dec-5.dot and looks like the following:

s0

s1=>1
INT

s2=>2

’(’

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/tpantlr

ALTERING RECOGNIZER ERROR MESSAGES 249

The state 0 mentioned in the error message is s0 in the diagram. In

this case, the parser had a lookahead of ; that clearly does not match

either alternative emanating from s0; hence, you have the no viable

alternative exception.

To get these rich error messages, override two methods from BaseRec-

ognizer, getErrorMessage() and getTokenErrorDisplay(), where the grammar

itself stays the same:

Download errors/E2.g

grammar E2;

@members {

public String getErrorMessage(RecognitionException e,

String[] tokenNames)

{

List stack = getRuleInvocationStack(e, this.getClass().getName());

String msg = null;

if (e instanceof NoViableAltException) {

NoViableAltException nvae = (NoViableAltException)e;

msg = " no viable alt; token="+e.token+

" (decision="+nvae.decisionNumber+

" state "+nvae.stateNumber+")"+

" decision=<<"+nvae.grammarDecisionDescription+">>";

}

else {

msg = super.getErrorMessage(e, tokenNames);

}

return stack+" "+msg;

}

public String getTokenErrorDisplay(Token t) {

return t.toString();

}

}

The next section describes how to improve error messages for your

users rather than for yourself during debugging.

10.3 Altering Recognizer Error Messages

This section describes the information available to you when generating

error messages and provides an example that illustrates how to enrich

error messages with context information from the grammar. For each

problem that can occur during sentence recognition, the recognizer cre-

ates an exception object derived from RecognitionException.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/tpantlr/code/errors/E2.g
http://www.pragmaticprogrammer.com/titles/tpantlr

ALTERING RECOGNIZER ERROR MESSAGES 250

RecognitionException

The superclass of all exceptions thrown by an ANTLR-generated recog-

nizer. It tracks the input stream; the index of the symbol (character,

token, or tree node) the recognizer was looking at when the error occurred;

the erroneous symbol pointer (int, Token, or Object); the line; and the char-

acter position within that line.

MismatchedTokenException

Indicates that the parser was looking for a particular symbol that it did

not find at the current input position. In addition to the usual fields, this

object tracks the expected token type (or character code).

MismatchedTreeNodeException

Indicates that the tree parser was looking for a node with a particular

token type and did not find it. This is the analog of a mismatched token

exception for a token stream parser. It tracks the expected token type.

NoViableAltException

The recognizer came to a decision point, but the lookahead was not con-

sistent with any of the alternatives. It tracks the decision number and

state number within the lookahead DFA where the problem occurred and

also stores a chunk of the grammar from which ANTLR generated the

decision.

EarlyExitException

The recognizer came to a (..)+ EBNF subrule that must match an alterna-

tive at least once, but the subrule did not match anything. It tracks the

decision number but not the state number because it is obviously not in

the middle of the lookahead DFA; the whole thing was skipped.

FailedPredicateException

A validating semantic predicates evaluated to false. It tracks the name of

the rule in which the predicate failed as well as the text of the predicate

itself from your grammar.

MismatchedRangeException

The recognizer tried to match a range of symbols, usually characters, but

could not. It tracks the minimum and maximum element in the range.

MismatchedSetException

The recognizer attempted to match a set of symbols but could not. It

tracks the set of elements in which the recognizer was interested.

MismatchedNotSetException

The recognizer attempted to match the inverse of a set (using the ~ oper-

ator) but could not.

Figure 10.1: ANTLR recognition exceptions

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/tpantlr

ALTERING RECOGNIZER ERROR MESSAGES 251

These exception objects contain information about what was found on

the input stream, what was expected, and sometimes information about

the location in the grammar associated with the erroneous parser state.

To avoid forcing English-only error messages and to generally make

things as flexible as possible, the recognizer does not create exception

objects with string messages. Instead, it tracks the information neces-

sary to generate an error.

Then the various reporting methods in BaseRecognizer generate a local-

ized error message, or you can override them. Do not expect the excep-

tion getMessage() methods to return anything. The table in Figure 10.1,

on the preceding page, summarizes the exception classes and the infor-

mation they contain. Improved in v3.

Beyond the information in these exception objects, you can collect any

useful information you want via actions in the grammar and then use

it to provide better error messages for your users.

One of the most useful enhancements to error messages is to include

information about the kind of abstract construct the parser was rec-

ognizing when it encountered an error. For example, instead of just

saying “missing ID,” it is better to say “missing ID in expression.” You

could use the literal rule name such as “multExpr,” but that is usually

meaningless to users.

You can think of this as a paraphrase mechanism because you are rep-

resenting a collection of grammar rules with a short description. What

you want is a map from all rules associated with a particular abstract

language construct (that is, declarations, statements, and expressions)

to a user-friendly string such as “expression.” In v2, there was

a paraphrase option that

automated this.The easiest way to implement a paraphrase mechanism is to push a

string onto a stack when you enter a rule that represents an abstract

construct in a language and then pop the value off when leaving the

rule. Do not push a paraphrase string for all rules. Just push a para-

phrase for the top-level rule such as expr, but not multExpr or atom.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/tpantlr

Pragmatic Projects
Your application is feature complete, but is it ready for the real world? See how to design

and deploy production-ready software and Release It!.

Have you ever noticed that project retrospectives feel too little, too late? What you need

to do is start having Agile Retrospectives.

Release It!
Whether it’s in Java, .NET, or Ruby on Rails,

getting your application ready to ship is only half

the battle. Did you design your system to survive a

sudden rush of visitors from Digg or Slashdot? Or

an influx of real world customers from 100 different

countries? Are you ready for a world filled with

flakey networks, tangled databases, and impatient

users?

If you’re a developer and don’t want to be on call at

3AM for the rest of your life, this book will help.

Design and Deploy Production-Ready Software

Michael T. Nygard

(368 pages) ISBN: 0-9787392-1-3. $34.95

http://pragmaticprogrammer.com/titles/mnee

Agile Retrospectives
Mine the experience of your software development

team continually throughout the life of the project.

Rather than waiting until the end of the project—as

with a traditional retrospective, when it’s too late to

help—agile retrospectives help you adjust to

change today.

The tools and recipes in this book will help you

uncover and solve hidden (and not-so-hidden)

problems with your technology, your methodology,

and those difficult “people issues” on your team.

Agile Retrospectives: Making Good Teams Great

Esther Derby and Diana Larsen

(170 pages) ISBN: 0-9776166-4-9. $29.95

http://pragmaticprogrammer.com/titles/dlret

http://pragmaticprogrammer.com/titles/mnee
http://pragmaticprogrammer.com/titles/dlret

Rails and More
If you know Java, and are curious about Ruby on Rails, you don’t have to start from

scratch. Read Rails for Java Developers and get a head start on this exciting new tech-

nology.

And whatever language you use, you’ll need a good text editor, too. On the Mac, we

recommend TextMate.

Rails for Java Developers
Enterprise Java developers already have most of

the skills needed to create Rails applications. They

just need a guide which shows how their Java

knowledge maps to the Rails world. That’s what

this book does. It covers: • The Ruby language

• Building MVC Applications • Unit and

Functional Testing • Security • Project

Automation • Configuration • Web Services

This book is the fast track for Java programmers

who are learning or evaluating Ruby on Rails.

Rails for Java Developers

Stuart Halloway and Justin Gehtland

(300 pages) ISBN: 0-9776166-9-X. $34.95

http://pragmaticprogrammer.com/titles/fr_r4j

TextMate
If you’re coding Ruby or Rails on a Mac, then you

owe it to yourself to get the TextMate editor. And,

once you’re using TextMate, you owe it to yourself

to pick up this book. It’s packed with information

which will help you automate all your editing tasks,

saving you time to concentrate on the important

stuff. Use snippets to insert boilerplate code and

refactorings to move stuff around. Learn how to

write your own extensions to customize it to the

way you work.

TextMate: Power Editing for the Mac

James Edward Gray II

(200 pages) ISBN: 0-9787392-3-X. $29.95

http://pragmaticprogrammer.com/titles/textmate

http://pragmaticprogrammer.com/titles/fr_r4j
http://pragmaticprogrammer.com/titles/textmate

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
The Definitive ANTLR Reference

http://pragmaticprogrammer.com/titles/tpantlr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragmaticprogrammer.com/titles/tpantlr.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/tpantlr
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
pragmaticprogrammer.com/titles/tpantlr
www.pragmaticprogrammer.com/catalog

	ANTLR Reference
	Error Reporting and Recovery
	A Parade of Errors
	Enriching Error Messages during Debugging
	Altering Recognizer Error Messages

