
Extracted from:

The Definitive ANTLR 4
Reference

This PDF file contains pages extracted from The Definitive ANTLR 4 Reference,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93435-699-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—September 19, 2012

http://pragprog.com

11.3 Islands in the Stream

The input files we’ve discussed so far all contain a single language. For
example, DOT, CSV, Python and Java files contain nothing but text conforming
to those languages. But, there are file formats that contain random text sur-
rounding structured regions or islands. We call such formats island languages
and describe them with island grammars. Examples include template engine
languages such as StringTemplate and the LaTeX document preparation
language, but XML is the quintessential island language. XML files contain
structured tags and &-entities surrounded by a sea of stuff we don’t care
about. (Because there is some structure between the tags themselves, we
might call XML an archipelago language.)

Classifying something as an island language often depends on our perspective.
If we’re building a C preprocessor, the preprocessor commands form an island
language where the C code is the sea. On the other hand, if we’re building a
C parser suitable for an IDE, the parser must ignore the sea of preprocessor
commands.

Our goal in this section is to learn how to ignore the sea and tokenize the
islands so the parser can verify syntax within those islands. We’ll need both
of those techniques to build a real XML parser in the next section. Let’s start
by learning how to distinguish XML islands from the sea.

Separating XML Islands from a Sea of Text

To separate XML tags from text, our first thought might be to build an input
character stream filter that strips everything between tags. This might make
it easy for the lexer to identify the islands, but the filter would throw out all
of the text data, which is not what we want. For example, given input
<name>John</name>, we don’t want to throw out John.

Instead, let’s build a baby XML grammar that lumps the text inside of tags
together as one token and the text outside of tags as another token. Since
we’re focusing on the lexer here, we’ll use a single syntactic rule that matches
a bunch of tags, &-entities, CDATA sections, and text (the sea):

lexmagic/Tags.g4
grammar Tags;
file : (TAG|ENTITY|TEXT|CDATA)* ;

Rule file makes no attempt to ensure the document is well formed—it just
indicates the kinds of tokens found in an XML file.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/Tags.g4
http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

To split up an XML file with lexer rules, we can just give rules for the islands
and then a catchall rule called TEXT at the end, to match everything else:

lexmagic/Tags.g4
COMMENT : '<!--' .* '-->' -> skip ;
CDATA : '<![CDATA[' .* ']]>' ;
TAG : '<' .* '>' ; // must come after other tag-like structures
ENTITY : '&' .* ';' ;
TEXT : ~[<&]+ ; // any sequence of chars except < and & chars

Those rules make heavy use of the nongreedy .* operation (see Matching String
Literals, on page ?) that scans until it sees what follows that operation in
the rule.

Rule TEXT matches one or more characters, as long as the character isn’t the
start of a tag or entity. It’s tempting to put .+ instead of ~[<&]+, but that would
consume until the end of the input once it got into the loop. There’s no string
to match following .+ in TEXT that would tell the loop when to stop.

An important but subtle ambiguity-resolving mechanism is in play here. In
Section 2.3, You Can't Put Too Much Water into a Nuclear Reactor, on page ?,
we learned that ANTLR lexers resolve ambiguities in favor of the rule specified
first in the grammar file. For example, rule TAG matches anything in angle
brackets, which includes comments and CDATA sections. Because we specified
COMMENT and CDATA first, rule TAG only matches tags that failed to match the
other tag rules.

As a side note, XML technically doesn’t allow comments that end with ---> or
comments that contain --. Using what we learned in Section 8.4, Error Alter-
natives, on page ?, we could add lexical rules to look for bad comments and
give specific and informative error messages:

BAD_COMMENT1: '<!--' .* '--->'
{System.err.println("Can't have ---> end comment");} -> skip ;

BAD_COMMENT2: '<!--' ('--'|.)* '-->'
{System.err.println("Can't have -- in comment");} -> skip ;

I’ve left them out of grammar Tags for simplicity.

Now let’s see what our baby XML grammar does with the following input:

lexmagic/XML-inputs/cat.xml
<?xml version="1.0" encoding="UTF-8"?>
<?do not care?>
<CATALOG>
<PLANT id="45">Orchid</PLANT>
</CATALOG>

Here’s the build and test sequence, using grun to print out the tokens:

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/Tags.g4
http://media.pragprog.com/titles/tpantlr2/code/lexmagic/XML-inputs/cat.xml
http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

$ antlr4 Tags.g4
$ javac Tags*.java
$ grun Tags file -tokens XML-inputs/cat.xml
[@0,0:37='<?xml version="1.0" encoding="UTF-8"?>',<3>,1:0]
[@1,38:38='\n',<5>,1:38]
[@2,39:53='<?do not care?>',<3>,2:0]
[@3,54:54='\n',<5>,2:15]
[@4,55:63='<CATALOG>',<3>,3:0]
[@5,64:64='\n',<5>,3:9]
[@6,65:79='<PLANT id="45">',<3>,4:0]
[@7,80:85='Orchid',<5>,4:15]
[@8,86:93='</PLANT>',<3>,4:21]
[@9,94:94='\n',<5>,4:29]
[@10,95:104='</CATALOG>',<3>,5:0]
[@11,105:105='\n',<5>,5:10]
[@12,106:105='<EOF>',<-1>,6:11]

This baby XML grammar properly reads in XML files and matches a sequence
of the various islands and text. What it doesn’t do is pull apart the tags and
pass the pieces to a parser so it can check the syntax.

Issuing Context-Sensitive Tokens with Lexical Modes

The text inside and outside of tags conform to different languages. For
example, id="45" is just lump of text outside of a tag but it’s three tokens inside
of a tag. In a sense, we want an XML lexer to match different sets of rules
depending on the context. ANTLR provides lexical modes that let lexers switch
between contexts (modes). In this section, we’ll learn to use lexical modes by
improving the baby XML grammar from the previous section so that it passes
tag components to the parser.

Lexical modes allow us to split a single lexer grammar into multiple sublexers.
The lexer can only return tokens matched by entering a rule in the current
mode. One of the most important requirements for mode switching is that
the language have clear lexical sentinels that can trigger switching back and
forth, such as left and right angle brackets. To be clear, modes rely on the
fact that the lexer doesn’t need syntactic context to distinguish between dif-
ferent regions in the input.

To keep things simple, let’s build a grammar for an XML subset where tags
contain an identifier but no attributes. We’ll use the default mode to match
the sea outside of tags and another mode to match the inside of tags. When
the lexer matches < in default mode, it should switch to island mode (inside
tag mode) and return a tag start token to the parser. When the inside mode
sees >, it should switch back to default mode and return a tag stop token.

• Click HERE to purchase this book now. discuss

Islands in the Stream • 5

http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

The inside mode also needs rules to match identifiers and /. The following
lexer encodes that strategy.

lexmagic/ModeTagsLexer.g4
lexer grammar ModeTagsLexer;

// Default mode rules (the SEA)
OPEN : '<' -> mode(ISLAND) ; // switch to ISLAND mode
TEXT : ~'<'+ ; // clump all text together

mode ISLAND;
CLOSE : '>' -> mode(DEFAULT_MODE) ; // back to SEA mode
SLASH : '/' ;
ID : [a-zA-Z]+ ; // match/send ID in tag to parser

Rules OPEN and TEXT are in the default mode. OPEN matches a single < and uses
lexer command mode(ISLAND) to switch modes. Upon the next token request
from the parser, the lexer will only consider rules in ISLAND mode. TEXT
matches any sequence of characters that doesn’t start a tag. Because none
of the lexical rules in this grammar use lexical command skip, all of them
return a token to the parser when they match.

In ISLAND mode, the lexer matches closing >, /, and ID tokens. When the lexer
sees >, it will execute the lexer command to switch back to the default mode,
identified by constant DEFAULT_MODE in class Lexer This is how the lexer ping-
pongs back and forth between modes.

The parser for our slightly-augmented XML subset matches tags and text
chunks as in grammar Tags, but now we’re using rule tag to match the individ-
ual tag elements instead of a single lumped token:

lexmagic/ModeTagsParser.g4
parser grammar ModeTagsParser;

options { tokenVocab=ModeTagsLexer; } // use tokens from ModeTagsLexer.g4

file: (tag | TEXT)* ;

tag : '<' ID '>'
| '<' '/' ID '>'
;

The only unfamiliar syntax in the parser is the tokenVocab option. When we
have the parser and lexer in separate files, we need to make sure that the
token types and token names from the two files are synchronized. For example,
lexer token OPEN must have the same token type in the parser as it does in
the lexer.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/ModeTagsLexer.g4
http://media.pragprog.com/titles/tpantlr2/code/lexmagic/ModeTagsParser.g4
http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

Let’s build the grammar and try it out on some simple XML input:

$ antlr4 ModeTagsLexer.g4 # must be done first to get ModeTagsLexer.tokens➾
$ antlr4 ModeTagsParser.g4➾
$ javac ModeTags*.java➾
$ grun ModeTags file -tokens➾
Hello <name>John</name>➾
EOF➾
[@0,0:5='Hello ',<2>,1:0]❮
[@1,6:6='<',<1>,1:6]
[@2,7:10='name',<5>,1:7]
[@3,11:11='>',<3>,1:11]
[@4,12:15='John',<2>,1:12]
[@5,16:16='<',<1>,1:16]
[@6,17:17='/',<4>,1:17]
[@7,18:21='name',<5>,1:18]
[@8,22:22='>',<3>,1:22]
[@9,23:23='\n',<2>,1:23]
[@10,24:23='<EOF>',<-1>,2:24]

The lexer sends <name> to the parser as the three tokens at indexes 1, 2, and
3. Also notice that Hello, which lives in the sea, would match rule ID but only
in ISLAND mode. Since the lexer starts out in default mode, Hello matches as
token TEXT. You can see the difference in the token types between tokens at
index 0 and 2 where name matches as token ID (token type 5).

Another reason that we want to match tag syntax in the parser instead of the
lexer is that the parser has much more flexibility to execute actions. Further-
more, the parser automatically builds a parse tree for us:

< <

Hello

file

\n

name /

tag

name> >

John tag

To use our grammar for an application, we could either use the usual listener
or visitor mechanism or add actions to the grammar. For example, to imple-
ment an XML SAX event mechanism, we could shut off the automatic tree
construction and embed grammar actions to trigger SAX method calls.

Now that we know how to separate the XML islands from the sea and how to
send tag components to a parser, let’s build a real XML parser.

• Click HERE to purchase this book now. discuss

Islands in the Stream • 7

http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

