
Extracted from:

The Definitive ANTLR 4
Reference

This PDF file contains pages extracted from The Definitive ANTLR 4 Reference,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93435-699-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—September 19, 2012

http://pragprog.com

3.3 Building a Translator with a Listener

Imagine your boss assigns you to build a tool that generates a Java interface
file from the methods in a Java class definition. Panic ensues if you’re a junior
programmer. As an experienced Java developer, you might suggest using the
Java reflection API or the javap tool to extract method signatures. If your Java
tool building kung fu is very strong you might even try using a bytecode library
such as ASM.2 Then your boss says, “Oh yeah. Preserve whitespace and
comments within the bounds of the method signature.” There’s no way around
it now: We have to parse Java source code. For example, we’d like to read in
Java code like this:

tour/Demo.java
import java.util.List;
import java.util.Map;
public class Demo {

void f(int x, String y) { }
int[] g(/*no args*/) { return null; }
List<Map<String, Integer>>[] h() { return null; }

}

and generate an interface with the method signatures, preserving the
whitespace and comments:

tour/IDemo.java
interface IDemo {

void f(int x, String y);
int[] g(/*no args*/);
List<Map<String, Integer>>[] h();

}

Believe it or not, we’re going to solve the core of this problem in about 15 lines
of code by listening to “events” fired from a Java parse tree walker. The Java
parse tree will come from a parser generated from an existing Java grammar
included in the source code for this book. We’ll derive the name of the gener-
ated interface from the class name and grab method signatures (return type,
method name, and argument list) from method definitions. For a similar but
more thoroughly explained example, see Section 7.3, Generating a Call Graph,
on page ?.

The key “interface” between the grammar and our listener object is called
JavaListener and ANTLR automatically generates it for us. It defines all of the
methods we can trigger via class ParseTreeWalker (from ANTLR’s runtime) as it
traverses the parse tree. In our case, we need to respond to three events:

2. http://asm.ow2.org

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/tpantlr2/code/tour/Demo.java
http://media.pragprog.com/titles/tpantlr2/code/tour/IDemo.java
http://asm.ow2.org
http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

When the walker enters and exits a class definition and when it encounters
a method definition. Here are the relevant methods from the generated listener
interface:

public interface JavaListener extends ParseTreeListener<Token> {
void enterClassDeclaration(JavaParser.ClassDeclarationContext ctx);
void exitClassDeclaration(JavaParser.ClassDeclarationContext ctx);
void enterMethodDeclaration(JavaParser.MethodDeclarationContext ctx);
...

}

The biggest difference between the listener and visitor mechanisms is that
listener methods are called independently by an ANTLR-provided walker
object, whereas visitor methods must walk their children with explicit visit
calls. Forgetting to invoke visitor methods on a node’s children, means those
subtrees don’t get visited.

To build our listener implementation, we need to know what rules classDeclaration
and methodDeclaration look like because listener methods have to grab phrase
elements matched by the rules. File Java.g4 is a complete grammar for Java,
but here are the two methods we need to look at for this problem:

tour/Java.g4
classDeclaration

: 'class' Identifier typeParameters? ('extends' type)?
('implements' typeList)?
classBody

;

tour/Java.g4
methodDeclaration

: type Identifier formalParameters ('[' ']')* methodDeclarationRest
| 'void' Identifier formalParameters methodDeclarationRest
;

So that we don’t have to implement all 200 or so interface methods, ANTLR
generates a blank default implementation called JavaBaseListener. Our interface
extractor can then subclass JavaBaseListener and override the methods of interest.

Our basic strategy will be to print out the interface header when we see the
start of a class definition. Then, we’ll print a terminating } at the end of the
class definition. Upon each method definition, we’ll spit out its signature.
Here’s the complete implementation:

tour/ExtractInterfaceListener.java
import org.antlr.v4.runtime.TokenStream;
import org.antlr.v4.runtime.misc.Interval;

public class ExtractInterfaceListener extends JavaBaseListener {

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/tpantlr2/code/tour/Java.g4
http://media.pragprog.com/titles/tpantlr2/code/tour/Java.g4
http://media.pragprog.com/titles/tpantlr2/code/tour/ExtractInterfaceListener.java
http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

JavaParser parser;
public ExtractInterfaceListener(JavaParser parser) { this.parser = parser; }

/** Listen to matches of classDeclaration */
@Override
public void enterClassDeclaration(JavaParser.ClassDeclarationContext ctx) {

System.out.println("interface I"+ctx.Identifier()+" {");
}

@Override
public void exitClassDeclaration(JavaParser.ClassDeclarationContext ctx) {

System.out.println("}");
}

/** Listen to matches of methodDeclaration */
@Override
public void enterMethodDeclaration(JavaParser.MethodDeclarationContext ctx) {

TokenStream tokens = parser.getTokenStream(); // need parser to get tokens
String type = "void";
if (ctx.type()!=null) {

type = tokens.getText(ctx.type().getSourceInterval());
}
String args = tokens.getText(ctx.formalParameters());
System.out.println("\t"+type+" "+ctx.Identifier()+args+";");

}
}

To fire this up, we need a main program, which looks almost the same as the
others in this chapter. Our application code starts after we’ve launched the
parser:

tour/ExtractInterfaceTool.java
JavaLexer lexer = new JavaLexer(input);
CommonTokenStream tokens = new CommonTokenStream(lexer);
JavaParser parser = new JavaParser(tokens);
ParserRuleContext<Token> tree = parser.compilationUnit(); // parse

ParseTreeWalker walker = new ParseTreeWalker(); // create standard walker
ExtractInterfaceListener extractor = new ExtractInterfaceListener(parser);
walker.walk(extractor, tree); // initiate walk of tree with listener

We also need to add import org.antlr.v4.runtime.tree.*; at the top of the file.

Given grammar Java.g4 and our main() in ExtractInterfaceTool, here’s the complete
build and test sequence:

$ antlr4 Java.g4➾
$ ls Java*.java ExtractInterface*.java➾
ExtractInterfaceListener.java JavaBaseListener.java JavaListener.java❮
ExtractInterfaceTool.java JavaLexer.java JavaParser.java
$ javac Java*.java Extract*.java➾

• Click HERE to purchase this book now. discuss

Building a Translator with a Listener • 5

http://media.pragprog.com/titles/tpantlr2/code/tour/ExtractInterfaceTool.java
http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

$ java ExtractInterfaceTool Demo.java➾
interface IDemo {❮

void f(int x, String y);
int[] g(/*no args*/);
List<Map<String, Integer>>[] h();

}

This implementation isn’t quite complete because it doesn’t include in the
interface file the import statements for the types referenced by the interface
methods such as List. As an exercise, try handling the imports. It should
convince you that it’s easy to build these kinds of extractors or translators
using a listener. We don’t even need to know what the importDeclaration rule
looks like because enterImportDeclaration() should simply print the text matched
by the entire rule: parser.getTokenStream().getText(ctx).

The visitor and listener mechanisms work very well and promote the separation
of concerns between parsing and parser application. Sometimes, though, we
need extra control and flexibility.

3.4 Making Things Happen During the Parse

Listeners and visitors are great because they keep application-specific code
out of grammars, making grammars easier to read and preventing them from
getting entangled with a particular application. For the ultimate flexibility
and control, however, we can directly embed code snippets (actions) within
grammars. These actions are copied into the recursive-descent parser code
ANTLR generates. In this section, we’ll implement a simple program that reads
in rows of data and prints out the values found in a specific column. After
that, we’ll see how to make special actions, called semantic predicates,
dynamically turn parts of a grammar on and off.

Embedding Arbitrary Actions in a Grammar

We can compute values or print things out on-the-fly during parsing if we
don’t want the overhead of building a parse tree. On the other hand, it means
embedding arbitrary code within the expression grammar, which is harder;
we have to understand the effect of the actions on the parser and where to
position those actions.

To demonstrate actions embedded in a grammar, let’s build a program that
prints out a specific column from rows of data. This comes up all the time
for me because people send me text files from which I need to grab, say, the
name or email column. For our purposes, let’s use the following data:

tour/t.rows
parrt Terence Parr 101

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/tpantlr2/code/tour/t.rows
http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

tombu Tom Burns 020
bke Kevin Edgar 008

The columns are tab-delimited and each row ends with a newline character.
To match this kind of input is pretty simple grammatically:

file : (row '\n')+ ;
row : STUFF+ ;

It gets mucked up, though, when we add actions. We need to create a con-
structor so that we can pass in the column number we want (counting from
1) and we need an action inside the (...)+ loop in rule row:

tour/Rows.g4
grammar Rows;

@parser::members {
int col;
public RowsParser(TokenStream input, int col) {

this(input);
this.col = col;

}
}

file: (row '\n')+ ;

row
locals [int i=0]

: (STUFF
{
$i++;
if ($i == col) System.out.println($STUFF.text);
}

)+
;

TAB : '\t' -> skip ; // match but don't pass to the parser
NL : '\n' ; // match and pass to the parser
STUFF: ~[\t\n]+ ; // match any chars except tab, newline

The STUFF lexical rule matches anything that’s not a tab or newline, which
means we can have space characters in a column.

A suitable main program should be looking pretty familiar by now. The only
thing different here is that we’re passing in a column number to the parser
using a custom constructor:

tour/Col.java
RowsLexer lexer = new RowsLexer(input);
CommonTokenStream tokens = new CommonTokenStream(lexer);
int col = Integer.valueOf(args[0]);

• Click HERE to purchase this book now. discuss

Making Things Happen During the Parse • 7

http://media.pragprog.com/titles/tpantlr2/code/tour/Rows.g4
http://media.pragprog.com/titles/tpantlr2/code/tour/Col.java
http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

RowsParser parser = new RowsParser(tokens, col); // pass column number!
parser.file(); // parse

There are a lot of details in there that we’ll explore in Chapter 9, Attributes
and Actions, on page ?. For now, actions are code snippets surrounded by
curly braces. The members action injects that code into the member area of
the generated parser class. The action within rule row accesses $i, the local
variable defined with the locals clause. It also uses $STUFF.text to get the text for
the most recently matched STUFF token.

Here’s the build and test sequence, one test per column:

$ antlr4 -no-listener Rows.g4 # don't need the listener➾
$ javac Rows*.java Col.java➾
$ java Col 1 < t.rows # print out column 1, reading from file t.rows➾
parrt❮
tombu
bke
$ java Col 2 < t.rows➾
Terence Parr❮
Tom Burns
Kevin Edgar
$ java Col 3 < t.rows➾
101❮
020
008

These actions extract and print values matched by the parser, but they don’t
alter the parse itself. Actions can also finesse how the parser recognizes input
phrases. In the next section, we’ll take the concept of embedded actions one
step further.

Altering the Parse with Semantic Predicates

Until we get to Chapter 10, Altering the Parse with Semantic Predicates, on
page ?, we can demonstrate the power of semantic predicates with a simple
example. Let’s look at a grammar that reads in sequences of integers. The
trick is that part of the input specifies how many integers to group together.
We don’t know until runtime how many integers to match. Here’s a sample
input file:

tour/t.data
2 9 10 3 1 2 3

The first number says to match the two subsequent numbers, 9 and 10. The
3 following the 10 says to match 3 more as a sequence. Our goal is a grammar
called Data that groups 9 and 10 together then 1, 2, and 3 like this:

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/tpantlr2/code/tour/t.data
http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

$ antlr4 -no-listener Data.g4➾
$ javac Data*.java➾
$ grun Data file -tree t.data➾
(file (group 2 (sequence 9 10)) (group 3 (sequence 1 2 3)))❮

The parse tree clearly identifies the groups:

9 3

sequence

group

2

file

group

3

2110

sequence

The key in the following Data grammar is semantic predicate {$i<=$n}?. That
predicate evaluates to true until we surpass the number of integers requested
by the sequence rule parameter n. False predicates make the associated alter-
native “disappear” from the grammar and, hence, from the generated parser.
In this case, a false predicate makes the (...)* loop terminate and return from
rule sequence.

tour/Data.g4
grammar Data;

file : group+ ;

group: INT sequence[$INT.int] ;

sequence[int n]
locals [int i = 1;]

: ({$i<=$n}? INT {$i++;})* // match n integers
;

INT : [0-9]+ ; // match integers
WS : [\t\n\r]+ -> skip ; // toss out all whitespace

Visually, the internal grammar representation of rule group used by the parser
looks something like this:

{$i<=$n}? INT {$i++}
group exit

The scissors and dashed line indicate that the predicate can snip that path,
leaving the parser with only one choice: the path to the exit.

• Click HERE to purchase this book now. discuss

Making Things Happen During the Parse • 9

http://media.pragprog.com/titles/tpantlr2/code/tour/Data.g4
http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

Most of the time we won’t need such micromanagement, but it’s nice to know
we’ve got a weapon for handling pathological parsing problems.

During our tour so far, we’ve focused on parsing features, but there’s lots of
interesting stuff going on at the lexical level. Let’s take a look.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

