
Extracted from:

The Definitive ANTLR 4
Reference

This PDF file contains pages extracted from The Definitive ANTLR 4 Reference,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93435-699-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—September 19, 2012

http://pragprog.com

Now that we’ve got ANTLR installed and have some idea how to build and run
a small example, we’re going to look at the big picture. In this chapter, we’ll
learn about the important processes, terminology, and data structures asso-
ciated with language applications. As we go along, we’ll identify the key ANTLR
objects and learn a little bit about what ANTLR does for us behind the scenes.
To lock things in, we’ll work through a small but useful project that processes
nested arrays of integers like {1, {2, 3}}.

2.1 Let’s Get Meta!

To implement a language we have to build an application that reads valid
sentences and reacts appropriately to the phrases (sentence fragments) and
input symbols it discovers. Broadly speaking, if an application computes or
“executes” sentences, we call that application an interpreter. Examples include
calculators, configuration file readers and Python interpreters. If we’re con-
verting sentences from one language to another, we call that application a
translator. Examples include Java to C# converters and compilers.

In order to react appropriately, the interpreter or translator has to recognize
all of the valid sentences, phrases, and subphrases of a particular language.
Recognizing a phrase means we can identify the various components and can
differentiate it from other phrases. For example, we recognize input sp = 100;
as a programming language assignment statement. That means we know that
sp is the assignment target and 100 is the value to store. Similarly, if we were
recognizing English sentences, we’d identify the parts of speech, such as the
subject, predicate, and object. The assignment is also clearly not an import
statement. The actual language application would then perform an abstract
operation like performAssignment("sp", 100) or translateAssignment("sp", 100).

Programs that recognize languages are called parsers or syntax analyzers.
Syntax refers to the rules governing language membership and in this book
we’re going to build ANTLR grammars to specify language syntax. A grammar
is just a set of rules, each one expressing the structure of a phrase. The ANTLR
tool translates grammars to parsers that look remarkably similar to what
we’d build by hand. (ANTLR is a program that writes other programs.)
Grammars themselves follow the syntax of a language optimized for specifying
other languages: ANTLR’s meta-language.

Parsing is much easier if we break it down into two similar but distinct tasks
or stages. The separate stages mirror how our brains read English text. We
don’t read a sentence character by character. Instead, we perceive a sentence
as a stream of words. The human brain subconsciously groups character
sequences into words and looks them up in a dictionary before recognizing

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

grammatical structure. This process is more obvious if we’re reading Morse
code because we have to convert the dots and dashes to characters before
reading a message. It’s also obvious when reading long words like Humuhu-
munukunukuapua’a, the Hawaiian state fish.

The process of grouping characters into words or symbols (tokens) is called
lexical analysis or simply tokenizing. We call a program that tokenizes the
input a lexer. The second stage is the actual parser and feeds off of these
tokens to recognize the sentence structure, in this case an assignment
statement. By default, ANTLR-generated parsers build a data structure called
a parse tree or syntax tree that records how the parser recognized the structure
of the input sentence and component phrases. The following diagram illus-
trates the basic data flow of a language recognizer.

stat

assign

expr

100

sp ;=

chars

LEXER

tokens

PARSERsp = 100 ;sp = 100;

parse tree

Language recognizer

The interior nodes of the parse tree are phrase names that group and identify
their children. The root node is the most abstract phrase name, in this case
stat (short for statement). The leaves of a parse tree are always the input
tokens. Sentences, linear sequences of symbols, are really just serializations
of parse trees we humans grok natively in hardware. To get an idea across to
someone, we have to conjure up the same parse tree in their heads using a
word stream.

Parse trees sit between a language recognizer and an interpreter or translator
implementation. They are extremely effective data structures because they
contain all of the input and complete knowledge of how the parser grouped
the symbols into phrases. Better yet, they are easy to understand and the
parser can generate them automatically.

Parse trees also allow us to reuse a single parser for any application that
needs to recognize the same language because we don’t have to inject appli-
cation-specific code snippets into the parsing process itself. (ANTLR and
other parser generators allow us to put raw code snippets into the grammar.)

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

Parse trees are also useful for translations that require multiple tree walks
because of computation dependencies where one stage needs information
from a previous stage. In other cases, an application is just a heck of a lot
easier to code and test in multiple stages because it’s so complex. Rather
than reparse the input characters for each stage, we can just walk the parse
tree multiple times, which is much more efficient.

Because we specify phrase structure with a set of rules, parse tree subtree
roots correspond to grammar rule names. As a preview of things to come,
here’s the grammar rule that corresponds to the first level of the assign subtree
from the diagram:

assign : ID '=' expr ';' ; // match an assignment statement like "sp = 100;"

Understanding how ANTLR translates such rules into human-readable parsing
code is fundamental to using and debugging grammars, so let’s dig deeper
into how parsing works.

2.2 Implementing Parsers

The ANTLR tool generates recursive-descent parsers from grammar rules such
as assign that we just saw. Recursive-descent parsers are really just a collection
of recursive methods, one per rule. The descent term refers to the fact that
parsing begins at the root of a parse tree and proceeds towards the leaves
(tokens). The rule we invoke first, the start symbol, becomes the root of the
parse tree. That would mean calling method stat() for the parse tree in the
previous section. A more general term for this kind of parsing is top-down
parsing; recursive-descent parsers are just one kind of top-down parser
implementation.

To get an idea of what recursive-descent parsers look like, here’s the (slightly
cleaned up) method that ANTLR generates for rule assign:

// assign : ID '=' expr ';' ;
void assign() { // method generated from rule assign

match(ID); // compare ID to current input symbol then consume
match('=');
expr(); // match an expression by calling expr()
match(';');

}

The cool part about recursive-descent parsers is that the call graph traced
out by invoking methods stat(), assign(), and expr() mirrors the interior parse
tree nodes. (Take a quick peek back at the parse tree figure.) The calls to
match() correspond to the parse tree leaves. To build a parse tree manually,

• Click HERE to purchase this book now. discuss

Implementing Parsers • 5

http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

we’d insert “add new subtree root” operations at the start of each rule method
and “add new leaf node” to match().

Method assign() only has one thing to do; it just checks to make sure everything
is present and in the right order. When the parser enters assign(), it doesn’t
have to choose between more than one alternative. An alternative is one of
the choices on the right-hand side of a rule definition. For example, the stat
rule that invokes assign likely has a list of other kinds of statements:

/** Match any kind of statement starting at the current input position */
stat: assign // First alternative ('|' is alternative separator)

| ifstat // Second alternative
| whilestat

...
;

A parsing rule for stat looks like a switch:

void stat() {
switch («current input token») {

CASE ID : assign(); break;
CASE IF : ifstat(); break; // IF is token type for keyword 'if'
CASE WHILE : whilestat(); break;
...
default : «raise no viable alternative exception»

}
}

Method stat() has to make a parsing decision by examining the next input
token. Parsing decisions predict which alternative will be successful. In this
case, seeing a WHILE keyword predicts the third alternative of rule stat. Rule
method stat() therefore calls whilestat(). You might’ve heard the term lookahead
token before; that’s just the next input token. A lookahead token is any token
that the parser sniffs before matching and consuming it.

Sometimes, the parser needs lots of lookahead tokens to predict which alter-
native will succeed. It might even have to consider all tokens from the current
position until the end of file! ANTLR silently handles all of this for you, but
it’s helpful have a basic understanding of decision-making so debugging
generated parsers is easier.

To visualize parsing decisions, imagine a maze with a single entrance and
exit that has words written on the floor. Every sequence of words along a path
from entrance to exit represents a sentence. The structure of the maze is
analogous to the rules in a grammar that define a language. To test a sentence
for membership in a language, we compare the sentence’s words with the

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

words along the floor as we traverse the maze. If we can get to the exit by
following the sentence’s words, that sentence is valid.

To navigate the maze, we must choose a valid path at each fork, just as we
must choose alternatives in a parser. We have to decide which path to take
by comparing the next word or words in our sentence with the words visible
down each path emanating from the fork. The words we can see from the fork
are analogous to lookahead tokens. The decision is pretty easy when each
path starts with a unique word. In rule stat, each alternative begins with
unique token and so stat() can distinguish the alternatives by looking at the
first lookahead token.

When the words starting each path from a fork overlap, a parser needs to
look farther ahead, scanning for words that distinguish the alternatives.
ANTLR automatically throttles the amount of lookahead up-and-down as
necessary for each decision. If the lookahead is the same down multiple paths
to the exit (end of file), there are multiple interpretations of the current input
phrase. Resolving such ambiguities is our next topic. After that, we’ll figure
out how to use parse trees to build language applications.

2.3 You Can’t Put Too Much Water into a Nuclear Reactor

An ambiguous phrase or sentence is one that has more than one interpreta-
tion. In other words, the words fit more than one grammatical structure. This
section title is an ambiguous sentence from a Saturday Night Live sketch I
saw years ago. The characters weren’t sure if they should be careful not to
put too much water into the reactor or they should put lots of water into the
reactor.

For Whom No Thanks Is Too Much

One of my favorite ambiguous sentences is on the dedication page of my friend Kevin’s
Ph.D. thesis: “To my Ph.D. supervisor, for whom no thanks is too much.” It’s unclear
whether he was grateful or ungrateful. Kevin claimed it was the latter and so I asked
why he had taken a postdoc job working for the same guy. His reply: “Revenge.”

Ambiguity can be funny in natural language but causes problems for comput-
er-based language applications. To interpret or translate a phrase, a program
has to uniquely identify the meaning. That means we have to provide unam-
biguous grammars so that the generated parser can match each input phrase
in exactly one way.

• Click HERE to purchase this book now. discuss

You Can’t Put Too Much Water into a Nuclear Reactor • 7

http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

We haven’t learned about grammars yet, but let’s include a few ambiguous
grammars here to make the notion of ambiguity more concrete. We can refer
back to this section when we run into ambiguities later.

Some ambiguous grammars are obvious:

stat: ID '=' expr ';' // match an assignment; can match "f();"
| ID '=' expr ';' // oops! an exact duplicate of previous alternative
;

expr: INT ;

Most of the time, though, the ambiguity will be more subtle as in the following
grammar that can match a function call via both alternatives of rule stat.

stat: expr ';' // expression statement
| ID '(' ')' ';' // function call statement
;

expr: ID '(' ')'
| INT
;

Here are the two interpretations of input f(); starting in rule stat:

f)

;

stat

(

expr ;(f)

stat
f(); as expr f(); as stat

Since most language inventors design their syntax to be unambiguous, an
ambiguous grammar is analogous to a programming bug. We need to reorga-
nize the grammar to present a single choice to the parser for each input
phrase. If the parser detects an ambiguous phrase, it resolves the ambiguity
by choosing the first alternative involved in the decision. In this case, the
parser would choose the interpretation of f(); on the left.

Ambiguities can occur in the lexer as well as the parser, but ANTLR resolves
them so the rules behave naturally. ANTLR resolves lexical ambiguities by
matching the input string to the rule specified first in the grammar. To see
how this works, let’s look at the extremely common ambiguity between key-
words and identifier rules. Keyword begin is also an identifier, at least lexically,
so the lexer can match b-e-g-i-n to either rule:

BEGIN : 'begin' ; // match b-e-g-i-n sequence; ambiguity resolves to BEGIN
ID : [a-z]+ ; // match one or more of any lowercase letter

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

Sometimes the syntax for language is just plain ambiguous and no amount
of grammar reorganization will change that fact. For example, the natural
grammar for arithmetic expressions can interpret input such as 1+2*3 in two
ways. Either by performing the operations left to right (as Smalltalk does) or
in precedence order like most languages. We’ll learn how to implicitly specify
the operator precedence order for expressions in Section 4.4, Dealing with
Precedence, Left Recursion, and Associativity, on page ?.

The venerable C language exhibits another kind of ambiguity, which we can
resolve using context information such as how an identifier is defined. Con-
sider code snippet i*j;. It looks like an expression, but its meaning depends
on whether i is a type name or variable. If it’s a type name, then the snippet
isn’t an expression. It’s a declaration of variable j as a pointer to type i. We’ll
see how to resolve these ambiguities in Chapter 10, Altering the Parse with
Semantic Predicates, on page ?.

Parsers by themselves only test input sentences for language membership
and build a parse tree. That’s crucial stuff, but it’s time to see how language
applications use parse trees to interpret or translate the input.

• Click HERE to purchase this book now. discuss

You Can’t Put Too Much Water into a Nuclear Reactor • 9

http://pragprog.com/titles/tpantlr2
http://forums.pragprog.com/forums/tpantlr2

