
Extracted from:

Language Implementation Patterns
Create Your Own Domain-Specific and

General Programming Languages

This PDF file contains pages extracted from Language Implementation Patterns,

published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

With permission of the creator we hereby publish the chess images in Chapter 11 under

the following licenses:

Permission is granted to copy, distribute and/or modify this document under the terms

of the GNU Free Documentation License, Version 1.2 or any later version published by

the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no

Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free

Documentation License"

(http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License).

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 Terence Parr.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-45-X

ISBN-13: 978-1-934356-45-6

Printed on acid-free paper.

P1.0 printing, December 2009

Version: 2010-1-13

http://www.pragprog.com

NORMALIZED HETEROGENEOUS AST 113

Token two = new Token(Token.INT,"2");

AST root = new AST(plus);

root.addChild(new AST(one));

root.addChild(new AST(two));

System.out.println("1+2 tree: "+root.toStringTree());

AST list = new AST(); // make nil node as root for a list

list.addChild(new AST(one));

list.addChild(new AST(two));

System.out.println("1 and 2 in list: "+list.toStringTree());

Here is a sample session:

$ java Test

1+2 tree: (+ 1 2)

1 and 2 in list: 1 2

$

The next pattern, Pattern 10, Normalized Heterogeneous AST , is an

extension to this pattern that allows multiple node types while retaining

the normalized child list.

Related Patterns

Pattern 10, Normalized Heterogeneous AST uses normalized lists of

children as well but allows nodes to have different class types.

210 Normalized Heterogeneous AST

Purpose

This pattern implements an abstract syntax tree (AST) using more than a

single node data type but with a normalized child list representation.

Discussion

This pattern is a variation on Pattern 9, Homogeneous AST , on page 111.

All we’re doing differently is distinguishing between nodes with our

implementation language’s type system. Because this pattern also uses

a normalized child list, we can derive heterogeneous nodes using AST

from Pattern 9, Homogeneous AST , on page 111 as a base class.

This pattern makes the most sense when we need to store node-specific

data and plan on using Pattern 13, External Tree Visitor, on page 133.

The normalized child list makes it much easier to build external visi-

tors. If you need lots of node-specific methods or plan on using Pattern

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tpdsl

NORMALIZED HETEROGENEOUS AST 114

12, Embedded Heterogeneous Tree Walker, on page 130, use Pattern

11, Irregular Heterogeneous AST , on page 116 instead. (An embedded

walker has walking methods distributed across the heterogeneous node

type definitions.)

Let’s flesh out some of the heterogenous node details from Section 4.2,

Implementing ASTs in Java, on page 98. We added a field, evalType, to

track expression type information (see also Pattern 20, Computing Static

Expression Types, on page 201). evalType tracks the type of the value

computed by the expression. For example, the type of 1+2 is integer. We

can put this field into an abstract class:

Download IR/Normalized/ExprNode.java

public abstract class ExprNode extends AST {

public static final int tINVALID = 0; // invalid expression type

public static final int tINTEGER = 1; // integer expression type

public static final int tVECTOR = 2; // vector expression type

/** Track expression type (integer or vector) for each expr node.

* This is the type of the associated value not the getNodeType()

* used by an external visitor to distinguish between nodes. */

int evalType;

public int getEvalType() { return evalType; }

public ExprNode(Token payload) { super(payload); }

/** ExprNode's know about the type of an expresson, include that */

public String toString() {

if (evalType != tINVALID) {

return super.toString()+"<type="+

(evalType == tINTEGER ? "tINTEGER" : "tVECTOR")+">";

}

return super.toString();

}

}

Rather than creating a generic node and then adding children to form

a + (addition) subtree, we can use AddNode’s constructor:

Download IR/Normalized/AddNode.java

public class AddNode extends ExprNode {

public AddNode(ExprNode left, Token addToken, ExprNode right) {

super(addToken);

addChild(left);

addChild(right);

}

public int getEvalType() { // ...

Note that it’s still a good idea to track the + token in the AST node.

This helps with a number of things including producing better error

messages.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/tpdsl/code/IR/Normalized/ExprNode.java
http://media.pragprog.com/titles/tpdsl/code/IR/Normalized/AddNode.java
http://www.pragprog.com/titles/tpdsl

NORMALIZED HETEROGENEOUS AST 115

Operand node types for integer and vector literals are straightforward

subclasses of ExprNode:

Download IR/Normalized/IntNode.java

public class IntNode extends ExprNode {

public IntNode(Token t) { super(t); evalType = tINTEGER; }

}

Download IR/Normalized/VectorNode.java

import java.util.List;

public class VectorNode extends ExprNode {

public VectorNode(Token t, List<ExprNode> elements) {

super(t); // track vector token; likely to be imaginary token

evalType = tVECTOR;

for (ExprNode e : elements) { addChild(e); } // add as kids

}

}

The following test code creates and prints an AST for 1+2.

Download IR/Normalized/Test.java

Token plus = new Token(Token.PLUS,"+");

Token one = new Token(Token.INT,"1");

Token two = new Token(Token.INT,"2");

ExprNode root = new AddNode(new IntNode(one), plus, new IntNode(two));

System.out.println(root.toStringTree());

Here is a sample session:

$ java Test

(+ 1<type=tINTEGER> 2<type=tINTEGER>)

$

The serialized tree output indicates that the 1 and 2 children have type

tINTEGER. Naturally, the result of the addition operation is also an inte-

ger, so the root should have type tINTEGER. In Chapter 8, Enforcing Static

Typing Rules, on page 198, we’ll figure out how to do this computation

properly. We’ll leave it blank for now.

Related Patterns

This pattern defines node types that subclass AST from Pattern 9, Homo-

geneous AST , on page 111. The next pattern, Pattern 11, Irregular Het-

erogeneous AST , on the next page, uses an irregular child list rather

than a normalized list like this pattern.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/tpdsl/code/IR/Normalized/IntNode.java
http://media.pragprog.com/titles/tpdsl/code/IR/Normalized/VectorNode.java
http://media.pragprog.com/titles/tpdsl/code/IR/Normalized/Test.java
http://www.pragprog.com/titles/tpdsl

IRREGULAR HETEROGENEOUS AST 116

211 Irregular Heterogeneous AST

Purpose

This pattern implements an abstract syntax tree (AST) using more than a

single node data type and with an irregular child list representation.

Discussion

This pattern only differs from Pattern 10, Normalized Heterogeneous

AST , on page 113 in the implementation of its child pointers. Instead of

a uniform list of children, each node data type has specific (named)

child fields. In this sense, the child pointers are irregular. In some

cases, named fields lead to more readable code. For example, methods

can refer to left and right instead of, say, children[0] and children[1].

When building trees from scratch, most programmers follow this pat-

tern. It’s very natural to name the fields of a class, in this case naming

the children of a node. The big downside to using nodes with irregular

children is that it’s much less convenient to build tree walkers (such

as Pattern 13, External Tree Visitor, on page 133). This pattern is fine

for small projects where the extra gain in readability is worth the small

bit of extra work to implement visitors. Larger projects tend to do so

much tree walking, though, that the irregular children prove to be a big

hassle.

To see where the pain comes from, look again at thetoStringTree() tree

printing method shown in Pattern 9, Homogeneous AST , on page 111.

Because the children of each node look the same, a single toStringTree()

works for all nodes. With irregular children, each node has to have its

own toStringTree(). There is no way to access a node’s children gener-

ically. That means duplicating essentially the same logic just to use

different field names. In the source code directory, you’ll see that both

ListNode.java and AddNode.java have node-specific toStringTree() imple-

mentations.

Since each node defines its own child fields, the abstract base class

HeteroAST doesn’t have a normalized list of children:

Download IR/Hetero/HeteroAST.java

public abstract class HeteroAST { // Heterogeneous AST node type

Token token; // Node created from which token?

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/tpdsl/code/IR/Hetero/HeteroAST.java
http://www.pragprog.com/titles/tpdsl

IRREGULAR HETEROGENEOUS AST 117

Node type AddNode is a typical irregular heterogeneous AST implemen-

tation. It has specific named child fields and node-specific methods.

In this case, there are methods for printing out the tree structure and

computing expression value result types:

Download IR/Hetero/AddNode.java

public class AddNode extends ExprNode {

ExprNode left, right; // named, node-specific, irregular children

public AddNode(ExprNode left, Token addToken, ExprNode right) {

super(addToken);

this.left = left;

this.right = right;

}

public String toStringTree() {

if (left==null || right==null) return this.toString();

StringBuilder buf = new StringBuilder();

buf.append("(");

buf.append(this.toString());

buf.append(' ');

buf.append(left.toStringTree());

buf.append(' ');

buf.append(right.toStringTree());

buf.append(")");

return buf.toString();

}

}

The other node type definitions are available in the source directory;

they differ only in the child field definitions. There is also a test file in

Test.java.

Related Patterns

See Pattern 10, Normalized Heterogeneous AST , on page 113.

Up Next

This completes the last tree construction pattern. The next chapter

explores how to build tree walkers for these data structures.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/tpdsl/code/IR/Hetero/AddNode.java
http://www.pragprog.com/titles/tpdsl

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Language Implementation Patterns’ Home Page

http://pragprog.com/titles/tpdsl

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/tpdsl.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/tpdsl
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/tpdsl
www.pragprog.com/catalog

