
Extracted from:

The Pragmatic Programmer
your journey to mastery

20 thAnniversary Edition

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

The Pragmatic Programmer
your journey to mastery

20 thAnniversary Edition

Dave Thomas
Andy Hunt

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital letters
or in all capitals. "The Pragmatic Programmer" and the linking g device are trademarks of
The Pragmatic Programmers, LLC.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: [to come from ITP]

Copyright © 2020 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be ob-
tained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, request forms and the appro-
priate contacts within the Pearson Education Global Rights & Permissions Department,
please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-595705-9
ISBN-10: 0-13-595705-2

1 19

9 The Evils of Duplication

Giving a computer two contradictory pieces of knowledge was Captain James
T. Kirk’s preferred way of disabling a marauding artificial intelligence.
Unfortunately, the same principle can be effective in bringing down your code.

As programmers, we collect, organize, maintain, and harness knowledge. We
document knowledge in specifications, we make it come alive in running code,
and we use it to provide the checks needed during testing.

Unfortunately, knowledge isn’t stable. It changes—often rapidly. Your
understanding of a requirement may change following a meeting with the
client. The government changes a regulation and some business logic gets
outdated. Tests may show that the chosen algorithm won’t work. All this
instability means that we spend a large part of our time in maintenance mode,
reorganizing and reexpressing the knowledge in our systems.

Most people assume that maintenance begins when an application is released,
that maintenance means fixing bugs and enhancing features. We think these
people are wrong. Programmers are constantly in maintenance mode. Our
understanding changes day by day. New requirements arrive and existing
requirements evolve as we’re heads-down on the project. Perhaps the environ-
ment changes. Whatever the reason, maintenance is not a discrete activity,
but a routine part of the entire development process.

When we perform maintenance, we have to find and change the representa-
tions of things—those capsules of knowledge embedded in the application.
The problem is that it’s easy to duplicate knowledge in the specifications,
processes, and programs that we develop, and when we do so, we invite a
maintenance nightmare—one that starts well before the application ships.

We feel that the only way to develop software reliably, and to make our
developments easier to understand and maintain, is to follow what we call
the DRY principle:

Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system.

Why do we call it DRY?

DRY—Don’t Repeat YourselfTip 15

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

The alternative is to have the same thing expressed in two or more places. If
you change one, you have to remember to change the others, or, like the alien
computers, your program will be brought to its knees by a contradiction. It
isn’t a question of whether you’ll remember: it’s a question of when you’ll
forget.

You’ll find the DRY principle popping up time and time again throughout this
book, often in contexts that have nothing to do with coding. We feel that it is
one of the most important tools in the Pragmatic Programmer’s tool box.

In this section we’ll outline the problems of duplication and suggest general
strategies for dealing with it.

DRY is More Than Code
Let’s get something out of the way up-front. In the first edition of this book
we did a poor job of explaining just what we meant by Don’t Repeat Yourself.
Many people took it to refer to code only: they thought that DRY means “don’t
copy-and-paste lines of source.”

That is part of DRY, but it’s a tiny and fairly trivial part.

DRY is about the duplication of knowledge, of intent. It’s about expressing
the same thing in two different places, possibly in two totally different ways.

Here’s the acid test: when some single facet of the code has to change, do you
find yourself making that change in multiple places, and in multiple different
formats? Do you have to change code and documentation, or a database
schema and a structure that holds it, or…? If so, your code isn’t DRY.

So let’s look at some typical examples of duplication.

Duplication in Code
It may be trivial, but code duplication is oh, so common. Here’s an example:

def print_balance(account)
 printf "Debits: %10.2f\n", account.debits
 printf "Credits: %10.2f\n", account.credits
if account.fees < 0

 printf "Fees: %10.2f-\n", -account.fees
else

 printf "Fees: %10.2f\n", account.credits
end

 printf " ———-\n"
if account.balance < 0

 printf "Balance: %10.2f-\n", -account.balance

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

else
 printf "Balance: %10.2f\n", account.balance
end

end

For now ignore the implication that we’re committing the newbie mistake of
storing currencies in floats. Instead see if you can spot duplications in this
code. (We can see at least three things, but you might see more).

What did you find? Here’s our list.

First, there’s clearly a copy-and-paste duplication of handling the negative
numbers. We can fix that by adding another function:

def format_amount(value)
 result = sprintf("%10.2f", value.abs)
if value < 0

 result + "-"
else

 result + " "
end

end

def print_balance(account)
 printf "Debits: %10.2f\n", account.debits
 printf "Credits: %10.2f\n", account.credits
 printf "Fees: %s\n", format_amount(account.fees)
 printf " ———-\n"
 printf "Balance: %s\n", format_amount(account.balance)
end

Another duplication is the repetition of the field width in all the printf calls. We
could fix this by introducing a constant and passing it to each call, but why
not just use the existing function?

def format_amount(value)
 result = sprintf("%10.2f", value.abs)
if value < 0

 result + "-"
else

 result + " "
end

end

def print_balance(account)
 printf "Debits: %s\n", format_amount(account.debits)
 printf "Credits: %s\n", format_amount(account.credits)
 printf "Fees: %s\n", format_amount(account.fees)
 printf " ———-\n"
 printf "Balance: %s\n", format_amount(account.balance)

• Click HERE to purchase this book now. discuss

The Evils of Duplication • 5

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

end

Anything more? Well, what if the client asks for an extra space between the
labels and the numbers? We’d have to change 5 lines. Let’s remove that
duplication.

def format_amount(value)
 result = sprintf("%10.2f", value.abs)
if value < 0

 result + "-"
else

 result + " "
end

end

def print_line(label, value)
 printf "%-9s%s\n", label, value
end

def report_line(label, amount)
 print_line(label + ":", format_amount(amount))
end

def print_balance(account)
 report_line("Debits", account.debits)
 report_line("Credits", account.credits)
 report_line("Fees", account.fees)
 print_line("", "———-")
 report_line("Balance", account.balance)
end

If we have to change the formatting of amounts, we change format_amount. If we
want to change the label format, we change report_line.

There’s still an implicit DRY violation: the number of hyphens in the separator
line is related to the width of the amount field. But it isn’t an exact match:
it’s currently one character shorter, so any trailing minus signs extend beyond
the column. This is the customer’s intent, and it’s a different intent to the
actual formatting of amounts.

Not All Code Duplication is Knowledge Duplication

As part of your online wine ordering application you’re capturing and validating
your user’s age, along with the quantity they’re ordering. According to the
site owner, they should both be numbers, and both greater than zero. So you
code up the validations:

def validate_age(value):
 validate_type(value, :integer)
 validate_min_integer(value, 0)

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

def validate_quantity(value):
 validate_type(value, :integer)
 validate_min_integer(value, 0)

During code review, the resident know-all bounces this code, claiming it’s a
DRY violation: both function bodies are the same.

They are wrong. The code is the same, but the knowledge they represent is
different. The two functions validate two separate things that just happen to
have the same rules. That’s a coincidence, not a duplication.

Duplication in Documentation
Eat your vegetables. Get 8 hours sleep. Comment your functions.

And so we often see something like this:

Calculate the fees for this account.
#
* Each returned check costs $20
* If the account is in overdraft for more than 3 days,
charge $10 for each day
* If the average account balance is greater that $2,000
reduce the fees by 50%

def fees(a)
 f = 0
if a.returned_check_count > 0

 f += 20 * a.returned_check_count
end
if a.overdraft_days > 3

 f += 10*a.overdraft_days
end
if a.average_balance > 2_000

 f /= 2
end

 f
end

The intent of this function is given twice: once in the comment and again in
the code. The customer changes a fee, and we have to update both. Given
time, we can pretty much guarantee the comment and the code will get out
of step.

Ask yourself when the comment adds to the code. From our point of view, it
simply compensates for some bad naming and layout. How about just this:

def calculate_account_fees(account)
 fees = 20 * account.returned_check_count

• Click HERE to purchase this book now. discuss

The Evils of Duplication • 7

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

 fees += 10 * account.overdraft_days if account.overdraft_days > 3
 fees /= 2 if account.average_balance > 2_000
 fees
end

The name says what it does, and if someone needs details, they’re laid out in
the source. That’s DRY!

DRY Violations in Data

Our data structures represent knowledge, and they can fall afoul of the DRY
principle. Let’s look at a class representing a line:

class Line {
 Point start;
 Point end;
double length;

};

At first sight, this class might appear reasonable. A line clearly has a start
and end, and will always have a length (even if it’s zero). But we have dupli-
cation. The length is defined by the start and end points: change one of the
points and the length changes. It’s better to make the length a calculated
field:

class Line {
 Point start;
 Point end;
double length() { return start.distanceTo(end); }

};

Later on in the development process, you may choose to violate the DRY
principle for performance reasons. Frequently this occurs when you need to
cache data to avoid repeating expensive operations. The trick is to localize
the impact. The violation is not exposed to the outside world: only the methods
within the class have to worry about keeping things straight.

class Line { private double length; private Point start; private Point end;

public Line(Point start, Point end) { this.start = start; this.end = end; calcu-
lateLength() }

// public void setStart(Point p) { this.start = p; calculate_length() } void
setEnd(Point p) { this.end = p; calculate_length() }

Point getStart(void) { return start; } Point getEnd(void) { return end; }

double getLength() { return length; }

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

private void calculate_length() { this.length = start.distanceTo(end); } }; ~~~

This example also illustrates an important issue: whenever a module exposes
a data structure, you’re coupling all the code that uses that structure to the
implementation of that module. Where possible, always use accessor functions
to read and write the attributes of objects. It will make it easier to add func-
tionality in the future.

This use of accessor functions ties in with Meyer’s Uniform Access principle,
described in Object-Oriented Software Construction [Mey97], which states that

All services offered by a module should be available through a uniform notation,
which does not betray whether they are implemented through storage or through
computation.”

Representational Duplication
Your code interfaces to the outside world: other libraries via APIs, other ser-
vices via remote calls, data in external sources, and so on. And pretty much
each time you do, you introduce some kind of DRY violation: your code has
to have knowledge that is also present in the external thing. It needs to know
the API, or the schema, or the meaning of error codes, or whatever. The
duplication here is that two things (your code and the external entity) have
to have knowledge of the representation of their interface. Change it at one
end, and the other end breaks.

This kind of duplication is inevitable, but can be mitigated. Here are some
strategies.

Duplication Across Internal APIs

For internal APIs, look for tools that let you specify the API in some kind of
neutral format. These tools will typically generate documentation, mock APIs,
functional tests, and API clients, the latter in a number of different languages.
Ideally the tool will store all your APIs in a central repository, allowing them
to be shared across teams.

Duplication Across External APIs

Increasingly, you’ll find that public APIs are documented formally using
something like OpenAPI2. This allows you to import the API spec into your
local API tools and integrate more reliably with the service.

2. https://github.com/OAI/OpenAPI-Specification

• Click HERE to purchase this book now. discuss

The Evils of Duplication • 9

https://github.com/OAI/OpenAPI-Specification
http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

If you can’t find such a specification, consider creating one and publishing
it. Not only will others find it useful; you may even get help maintaining it.

Duplication With Data Sources

Many data sources allow you to introspect on their data schema. This can be
used to remove much of the duplication between them and your code. Rather
than manually creating the code to contain this stored data, you can generate
the containers directly from the schema. Many persistence frameworks will
do this heavy lifting for you.

There’s another option, and one we often prefer. Rather than writing code
that represents external data in a fixed structure (an instance of a struct or
class, for example), just stick it into a key/value data structure (your language
might call it a map, hash, dictionary, or even object).

On its own this is a risky thing to do: you lose a lot of the security of knowing
just what data you’re working with. So we recommend adding a second layer
to this solution: a simply table driven validation suite that verifies that the
map you’ve created contains at least the data you need, in the format you
need it. Again, you might be able to use your API generation tool to perform
this validation.

Interdeveloper Duplication
Perhaps the hardest type of duplication to detect and handle occurs between
different developers on a project. Entire sets of functionality may be inadver-
tently duplicated, and that duplication could go undetected for years, leading
to maintenance problems. We heard firsthand of a U.S. state whose govern-
mental computer systems were surveyed for Y2K compliance. The audit turned
up more than 10,000 programs that each contained a different version of
Social Security number validation code.

At a high level, deal with the problem by building a strong, tight-knit team
with good communications.

However, at the module level, the problem is more insidious. Commonly
needed functionality or data that doesn’t fall into an obvious area of respon-
sibility can get implemented many times over.

We feel that the best way to deal with this is to encourage active and frequent
communication between developers.

Maybe run a daily scrum standup meeting. Set up forums (such as Slack
channels) to discuss common problems. This provides a nonintrusive way of

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

communicating—even across multiple sites—while retaining a permanent
history of everything said.

Appoint a team member as the project librarian, whose job is to facilitate the
exchange of knowledge. Have a central place in the source tree where utility
routines and scripts can be deposited. And make a point of reading other
people’s source code and documentation, either informally or during code
reviews. You’re not snooping—you’re learning from them. And remember, the
access is reciprocal—don’t get twisted about other people poring (pawing?)
through your code, either.

Make It Easy to ReuseTip 16

What you’re trying to do is foster an environment where it’s easier to find and
reuse existing stuff than to write it yourself. If it isn’t easy, people won’t do
it. And if you fail to reuse, you risk duplicating knowledge.

Related Sections Include
• Topic 38, Programming by Coincidence, on page ?
• Topic 32, Configuration, on page ?
• Topic 28, Decoupling, on page ?
• Topic 8, The Essence of Good Design, on page ?
• Topic 40, Refactoring, on page ?

• Click HERE to purchase this book now. discuss

The Evils of Duplication • 11

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

