
Extracted from:

Pragmatic Version Control
Using Git

This PDF file contains pages extracted from Pragmatic Version Control, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Pragmatic Version Control
Using Git

Travis Swicegood

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

A version control system (VCS) is a methodology or tool that helps you keep
track of changes you make to the files in your project. In its simplest, manual
form, a VCS is you creating a copy of the file you’re working with and adding
the date and time to the end of it.

Being pragmatic, we want something that will help automate that process.
This is where VCS tools come in. They track all the changes for us, keeping
a copy of every change made to the code in our projects.

Distributed version control systems (DVCSs) are no different in that respect.
Their main goal is still to help us track changes we make to the projects we’re
working on. The difference between VCSs and DVCSs is how developers
communicate their changes to each other.

In this chapter, we’ll explore what a VCS is and how a DVCS—Git in particular
—is different from the traditional, centralized model. You’ll learn the following:

• What a repository is
• How to determine what to store
• What working trees are
• How files are manipulated and how to stay in sync
• How to track projects, directories, and their files
• How to mark milestones with tags
• How to track an alternate history with a branch
• What merging is
• How Git handles locking

All of these ideas revolve around the repository, so let’s start there.

1.1 The Repository

The repository is the place where the version control system keeps track of
all the changes you make. Most VCSs store the current state of the code,
along with when each change was made, who made it, and a text log message
that explains why they made the change.

You can think of a repository like a bank vault and its history like the ledger.
Each time a deposit—what is called a commit in VCS lingo—is made, your
VCS tool adds an entry to the ledger and stores the changes for safekeeping.

Originally, these repositories were accessible only if you were logged directly
into the machines they were stored on. That doesn’t scale, so tools such as
CVS, and later Subversion, were created. They allowed developers to work

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tsgit
http://forums.pragprog.com/forums/tsgit

remotely from the repository and send their changes back using a network
connection.

These systems follow a centralized repository model. That means there is one
central repository that everyone sends their changes to. Each developer keeps
a copy of the latest version of the repository, and whenever they make a
change to it, they send that change back to the main repository.

The centralized repository is an improvement over having to directly access
the machine where the repository lives, but it still has limitations. First, you
have only the latest version of the code. To look at the history of changes, you
have to ask the repository for that information.

That brings up the second problem. You have to be able to access the remote
repository—normally over a network.

In this age of always-on, broadband Internet connections, we forget that
sometimes we don’t have access to a network. As I’ve worked on this book,
I’ve written parts at my home office, in coffee shops, on cross-country plane
flights, and on the road (as a passenger) while traveling across country. I even
did some of the final editing at a rustic cabin in Lake of the Ozarks, Missouri.

That highlights one of the biggest advantages of a DVCS, which is the model
that Git follows. Instead of having one central repository that you and everyone
else on your team sends changes to, you each have your own repository that
has the entire history of the project. Making a commit doesn’t involve connect-
ing to a remote repository; the change is recorded in your local repository.

Let’s go back to our bank vault analogy for a minute. A centralized system is
like having one bank that every developer on your team uses. A distributed
system is like each developer having their own personal bank.

You might be wondering how you can keep in sync with everyone else’s
changes and make sure they have yours. Each developer still sends their
changes back to the main project repository. They can have access to send
the changes directly to the main repository (an action called pushing in Git),
or they might have to submit patches, which are small sets of changes, to
the project’s maintainer and have them update the main repository.

1.2 What Should You Store?

The short answer: everything.

6 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tsgit
http://forums.pragprog.com/forums/tsgit

The slightly less short answer: everything that you need to work on your
project. Your repository needs a copy of everything in your project that’s
essential for you to modify, enhance, and build new versions of it.

The first and most obvious thing you should store in the repository is your
project’s source code. Without that, you can’t fix bugs or implement new
features.

Most projects have some sort of build files. A couple of common ones are
Makefiles, Rakefiles, or Ant’s build.xml. These need to be stored so you can
compile your source code into something usable.

Other common items to store in your repository are sample configuration
files, documentation, images that are used in the application, and of course
unit tests.

Determining what to include is easy. Ask yourself, “If I didn’t have X, could
I do my work on this project?” If the answer is no, you couldn’t, then it should
be included.

Like all good rules, there is an exception. The rule doesn’t apply to tools that
you should use. You should include the Ant build.xml file but not the entire
Ant program.

It’s not a hard exception, though. Sometimes storing a copy of Ant or JUnit
or some other program in your repository can make sure the entire team is
using the same version of the tools you use. These should be stored separately
from your project, however.

• Click HERE to purchase this book now. discuss

What Should You Store? • 7

http://pragprog.com/titles/tsgit
http://forums.pragprog.com/forums/tsgit

