
Extracted from:

Adopting Elixir
From Concept to Production

This PDF file contains pages extracted from Adopting Elixir, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Adopting Elixir
From Concept to Production

Ben Marx
José Valim
Bruce Tate

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-252-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

A common story we’ve heard from Elixir newcomers is that deployment was
particularly challenging. If you’re going to successfully adopt any new lan-
guage, you need to be able to get that beautiful, powerful code onto production
servers, but that’s not enough. You need to do so reliably, without downtime,
and with the ability to gracefully recover should things go wrong.

To illustrate this point, meet Tetiana Dushenkivska. She’s a Ruby developer
who adopted Elixir early on and was the keynote speaker at ElixirConf Europe
2017. She mastered Elixir concepts when we had one-tenth of the available
learning resources that we do today:

Bruce: How was your first encounter with Elixir?

Tetiana: I was happily working with Ruby, when a colleague shared his finding,
Elixir. At first, I didn’t get too excited. I was thinking: “Those languages and
frameworks keep popping up and I don’t have time right now to learn another lan-
guage.” Regardless of that thought, I still took a quick look. At first glance it looked
much like Ruby, but soon enough I started to understand that maybe it looks like
Ruby, but it doesn’t behave like Ruby. The more I read about Elixir, however, the
more I wanted to keep learning about it. The first thing to motivate me to start
building something in Elixir was the ability to do things concurrently. Then I thought:
“Oh, this language looks VERY interesting, I should definitely learn more about it.”

Bruce: How did you move forward from there?

Tetiana: Programming Elixir by Dave Thomas was my introduction to Elixir,
together with the official getting started guide on the website.

The concept of functional languages resonated quickly with me. When I was
studying electronic engineering at university I learned about signals and how they’re
transformed from one shape to another. Functional programming is somewhat
similar. A signal is like data in functional programming which when put through
some filters, or functions in Elixir, results in a new signal. You can’t rebind a signal.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tvmelixir
http://forums.pragprog.com/forums/tvmelixir

You just have an input signal and when it comes out of the black box it’s a new
signal. And every time we pass the same input to the black box, we get the same
output.

Bruce: Have you had hiccups or roadblocks along the way? How did you overcome
them?

Tetiana: I would say deployment was hard. There are lots of ways to “build
releases” and it took a bit of time to research and find a way that would work for
me. Thankfully, the Elixir community is a great place to ask questions. Michał
Muskała pointed me in the right direction, which helped me solve the deploying
applications challenge.

The Elixir community is doing a great job helping people who are stuck, to solve
their problems. I am glad that people who have learned something are happy to
share their knowledge, so that everyone else can learn faster.

Tetiana is not alone. For new languages, the deployment story almost always
takes time to crystallize. We’ve heard story after story from happy early
adopters of many emerging languages identifying deployment as a pain point.
The same is true with Elixir.

Even so, we’re starting to see some overarching strategies and contenders
begin to surface in the deployment space. In this chapter, you’ll learn about
these emerging technologies. Elixir developers are moving beyond the Mix
tool for deployment, and they’re formally defining releases using tools such
as Distillery. Then, rather than focusing on hot-code-swapping, they’re using
a technique called blue-green deployments. We’ll walk you through how these
tools and techniques work. That’s what we’ll focus on, but there are a few
topics we won’t cover.

In this chapter, we won’t discuss any particular stack. We won’t give you
specific recipes for deploying to Heroku or using Docker containers,
automating with Chef, or managing your cluster with Kubernetes. In fact,
we’ve seen all of those options being successfully used to run Elixir systems.
Instead of giving a way-too-thin blow by blow for each option out there or
anointing a winner when the market has yet to decide, we’re going to focus
on the Elixir bits. After all, this book is called Adopting Elixir. Let’s get to it.

Deploying with Mix
The emergence of deployment tools within git and Elixir’s basic tooling makes
it pretty simple to stand up a dead-simple deployment strategy for a single
machine. The easiest way to run an Elixir application in production is by
fetching or pushing the source code to your servers and calling:

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tvmelixir
http://forums.pragprog.com/forums/tvmelixir

$ MIX_ENV=prod mix run --no-halt

mix run will compile and start the current application and all of its dependen-
cies. --no-halt guarantees Elixir won’t terminate just after the application is
booted. Phoenix is similar. Instead of mix run --no-halt, you will execute mix
phx.server, still setting the Mix environment to “prod”.

MIX_ENV=prod ensures your application is running in the production environment
with the relevant configurations. One of those configurations is the :start_per-
manent option, which you will find in your mix.exs file:

start_permanent: Mix.env == :prod

Each application runs as :temporary or :permanent. If a permanent application
shuts down, it automatically causes the whole VM to shut down too, so
something else can restart it.

Here’s the problem :permanent was designed to solve. Say you were to start a
Phoenix application without setting :start_permanent. Suppose its top-level
supervisor has to restart its children multiple times in a short period due to
a fault. If the supervisor exceeds the amount of restarts allowed in a timeframe,
it terminates, causing your application to also terminate. If your application
has not been set to permanent, the remaining applications will continue
running without your Phoenix app, so you can’t accept any more requests.
In development, that’s likely fine, but in production, you want to shut the VM
down so something else can restart it cleanly.

If you are using a Platform-as-a-Service (PaaS) offering such as Heroku for
your deployment, it’s likely using mix run or a similar task for starting your
applications. The advantage of using Mix in production is that you can rely
on the same tooling that you use for your development. All you need is the
source code. It is an option that works well for very simple deployments.

As soon as you want to leverage some of the more advanced capabilities that
the VM offers you, this approach starts to fall apart. That’s what we will do
now. We will add some nuts and bolts to our Mix deployment and show it
quickly becomes unmanageable.

The –no-compile Flag
Our first modification will add support for a multi-server deployment. We’ll
compile once and push that code to each server.

Mix was designed primarily as a development tool. When you execute the mix
run task, Mix checks to see whether your code requires compilation. Since

• Click HERE to purchase this book now. discuss

Deploying with Mix • 7

http://pragprog.com/titles/tvmelixir
http://forums.pragprog.com/forums/tvmelixir

you’re deploying to multiple servers, you may want to compile your application
only once and not per server. One option is to have a build machine that
exists specifically to build the deployment artifact. When done, the build
machine can push the artifact to your production servers or your production
servers can fetch it directly from the build machine. Let’s see how to construct
this artifact with Mix.

On your build machine, you’d run:

$ MIX_ENV=prod mix compile

And in production:

$ MIX_ENV=prod mix run --no-halt

Mix works by tracking the modification times of source files and of the gener-
ated beam files. There’s a problem with this approach. Moving your files
changes your modification times, so the mix run task notices the changed times
and recompiles, defeating the whole purpose of the build server!

There’s a simple fix. You can pass the --no-compile flag when starting in produc-
tion, like this:

$ MIX_ENV=prod mix run --no-halt --no-compile

It is one small change, but the first of many. There’s more work to do.

The –no-deps-check Flag
There’s another Mix downside. It requires the whole source code tree and its
dependencies in production, so if you have git dependencies, Mix will require
git on the production server. To solve this problem, you’d pass the --no-deps-
check flag to disable dependency checking.

On your build machine, you would run:

$ MIX_ENV=prod mix compile
$ rm -rf deps/*/.git

And in production:

$ MIX_ENV=prod mix run --no-halt --no-compile --no-deps-check

The previous command still requires dependency source code but does allow
removal of any version control metadata from our dependencies. That in turn
reduces the size of your production artifacts. The problem is solved, but wait,
there’s more.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tvmelixir
http://forums.pragprog.com/forums/tvmelixir

VM Configuration
On production, you’ll often want to fine-tune both Elixir and the VM. You can
handle some of this tuning in the config/config.exs file. For example, you can
choose the proper Logger level by setting:

config :logger, :level, :warn

That change will show log entries at the :warn level of severity or stronger.
That’s not the only configuration you’ll encounter because some configuration
happens when the VM boots.

For example, many applications may want to tweak +K and +A flags for pro-
duction. +K true enables kernel pooling, which provides an OS-specific I/O
event notification system. +A increases the async thread pool, which is a group
of threads started by the VM responsible for all of the I/O work done by your
code. By default the async pool has 10 threads, but if you are doing a lot of
I/O, you likely want to increase that count to about 8 threads per core. If you
have 8 cores, 64 threads is a better starting point.

Unfortunately the mix run command can’t receive VM configurations because
you need to specify those commands when the VM starts. The solution is to
invoke mix through elixir, like this:

$ MIX_ENV=prod elixir --erl "+K true +A 16" -S \
> mix run --no-halt --no-compile --no-deps-check

By using the elixir command-line script, you’ve eliminated the problem. You
can simply pass VM commands with the --erl flag, using the -S flag to instruct
elixir to run the mix command available in your system. Those aren’t the only
flags to consider, though. If you want to run distributed Erlang, you’ll need
still more flags.

This kind of application startup complexity is common for running all but
the simplest applications. You can try to juggle startup parameters in this
way, but you’d be playing with fire because it’s an error-prone approach.

In case you’re not yet convinced, let’s continue pushing the boundaries and
see how far we can go.

run_erl and heart
Erlang is more than the standard library and virtual machine. As you might
expect after thirty years of history, it ships with many tools for successfully
running Erlang in production. Two of those tools are run_erl and heart.

• Click HERE to purchase this book now. discuss

run_erl and heart • 9

http://pragprog.com/titles/tvmelixir
http://forums.pragprog.com/forums/tvmelixir

Managing Shared I/O
run_erl1 helps you manage the standard input and output of a program. The
Unix tool redirects all output to log files. For those so inclined, there’s a sim-
ilar Windows tool named start_erl.2

run_erl expects a pipe name, the log directory, and the command to execute.
Remember the log directory must be created before you invoke run_erl, otherwise
it will silently fail. Let’s give run_erl a try:

$ mkdir ./log
$ run_erl ./loop ./log "elixir -e 'Enum.map Stream.interval(1000), &IO.puts/1'"

This command runs an Elixir script that prints a number to standard output
every second. Assuming you’ve created a log directory beforehand, you’ll see
a new file at log/erlang.log.1 with the convenient sequence of logs. run_erl automat-
ically rotates logs every 100KB, keeping the last four files.

In production, run_erl is usually executed with the -daemon flag. Let’s give it a
try but this time with iex:

$ run_erl -daemon ./iex_sample ./log "iex"

Here we used run_erl to start iex as a daemon. Notice we have no access to iex
though. That’s where to_erl comes in.

The first run_erl argument is a named pipe. The pipe lets us interface with any
running program via the to_erl tool, like this:

$ to_erl ./iex_sample
Attaching to ./iex_sample (^D to exit)

iex(1)> 1 + 2
3

to_erl allows us to interact with any system through standard I/O. If you want
to shut down the VM, you can invoke System.stop(), which gracefully shuts the
Erlang system down, stopping all applications with their respective supervi-
sion trees. You can directly invoke System.stop() in your IEx session or send it
via to_erl:

$ echo "System.stop()" | to_erl ./iex_sample

If your application requires specific shutdown instructions, you can send
them as well:

1. http://erlang.org/doc/man/run_erl.html
2. http://erlang.org/doc/man/start_erl.html

• 10

• Click HERE to purchase this book now. discuss

http://erlang.org/doc/man/run_erl.html
http://erlang.org/doc/man/start_erl.html
http://pragprog.com/titles/tvmelixir
http://forums.pragprog.com/forums/tvmelixir

$ echo "MyApp.clean_shutdown()" | to_erl ./my_app

While run_erl provides logging and log rotation, to_erl can be an excellent tool
for debugging live systems. Teams running Elixir in production should defi-
nitely account for those tools in their stack. Let’s continue to build on our
mix run commands, adding run_erl:

$ mkdir ./log
$ run_erl -daemon ./my_app ./log \
> "MIX_ENV=prod iex --erl '+K true +A 16' -S \
> mix run --no-halt --no-compile --no-deps-check"

We are now using iex instead of elixir to boot the app, allowing us to use to_erl
and interact with our application at any moment. Note we are nesting single
and double quotes. Pay attention. With each step, the blob continues to grow.

• Click HERE to purchase this book now. discuss

run_erl and heart • 11

http://pragprog.com/titles/tvmelixir
http://forums.pragprog.com/forums/tvmelixir

