
Extracted from:

From Objects to Functions
Build Your Software Faster and Safer

with Functional Programming and Kotlin

This PDF file contains pages extracted from From Objects to Functions, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas

http://www.pragprog.com

From Objects to Functions
Build Your Software Faster and Safer

with Functional Programming and Kotlin

Uberto Barbini

The Pragmatic Bookshelf
Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Adaobi Obi Tulton
Copy Editor: Karen Galle
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-845-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Separating the Domain from the Infrastructure
One of the general principles of good software design is that each module of
our system should have only one reason to change. For this reason, we want
to keep separate the logic that forms the business domain model from the
technical implementation. We also want to keep our domain completely pure
and without side effects, so we can easily test it and safely re-use its functions
everywhere we need to.

An interesting question is how to distinguish what is business logic from what
isn’t? The main difference is at language level: business logic is something
you can discuss with the business people, without using any technical terms
such as serialization formats, network protocols, and so on. This can be hard
if your business model is something technical, for example, if the product
you are developing is a cloud platform.

On an even more general level, you can look at what you want to decouple in
the design of your application. For example, do you really want to mix HTTP
routing with JSON parsing and reporting logic? Probably not. Keeping all
these aspects separate is the foundation of a clean design.

The Hub
So how can we keep the domain pure and separated from the rest? We’ll use
an interface to wrap all the domain logic and keep it separated from the
external adapter. This approach is called Port and Adapter. It has been pro-
posed by Alistair Cockburn,2 and even if it’s based on the object-oriented
paradigm, it also works very well with functional programming.

The Port and Adapter Pattern

Also known as Hexagonal Architecture, it’s a software architecture
pattern that aims to create software systems that are flexible,
maintainable, and adaptable to change. The primary goal of this
pattern is to create a separation between the core business logic
of a system and the external dependencies it relies on, such as
databases, web services, and user interfaces.

The idea is to introduce a layer of abstraction between the core
logic and its external dependencies, known as ports and adapters.
Ports define the interfaces through which the core logic communi-
cates with the external dependencies, while adapters implement

2. https://alistaircockburn.com/Component%20plus%20strategy.pdf

• Click HERE to purchase this book now. discuss

https://alistaircockburn.com/Component%20plus%20strategy.pdf
http://pragprog.com/titles/uboop
http://forums.pragprog.com/forums/uboop

The Port and Adapter Pattern

those interfaces and provide the actual communication with the
external dependencies.

Overall, the Port and Adapter pattern is a powerful tool for creating
maintainable and adaptable software systems, particularly in
complex domains where external dependencies are numerous and
subject to change.

You may wonder, why do we need yet another abstraction? Isn’t it simpler if
we just connect our domain functions to the HTTP layer?

Edsger W. Dijkstra said, “Being abstract is something profoundly different
from being vague…The purpose of abstraction is not to be vague but to create
a new semantic level in which one can be absolutely precise.”

It may be simple to connect domain functions to the HTTP layer directly, but
after a while, it will become very hard to separate one from the other. Intro-
ducing an interface to separate the domain from the adapters will allow us
to keep the separation precise.

This domain-wrapping interface works like a hub, since it stays in the center
of our application, and it’s connected to the external by many functions that
work like the spokes of a wheel.

The hub defines and abstracts upon the boundaries between the domain and
the technical layer—in a very precise and oddly satisfying way. The domain
stays inside the hub and only communicates with the rest of the application
using specific functions. I learned this approach while working with Nat Pryce.
It also makes it easier to test each component separately.3

So far, we have only implemented a single story, but for the sake of explanation,
let’s consider a domain that has to connect with two databases, a message
queue, an email server, and the HTTP routes. Here is a diagram to illustrate
our implementation of ports and adapter architecture with hub and spokes:

3. http://www.natpryce.com/articles/000772.html

• 6

• Click HERE to purchase this book now. discuss

http://www.natpryce.com/articles/000772.html
http://pragprog.com/titles/uboop
http://forums.pragprog.com/forums/uboop

In this conceptual diagram, anything inside the hub is domain related,
functionally pure, and can communicate with external components only using
its “spokes”—the arrows around it. In this way, the business logic can change
without any change on the technical layers, like our HTTP functions. At the
same time, if we need to change a technical detail, we don’t have to touch
the business logic at all.

Note that some arrows are pointing inward and some pointing outward from
the hub; in the diagram, the arrows follow the direction of the call. Inward
arrows are mapped on methods of the hub that can be called by the outer
adapters. Outward arrows represent the dependency methods that the domain
logic inside the hub needs to call.

Plug the Hub into Zettai
Going back to our application, we said that we should put our business logic
inside the hub; what does this mean in concrete terms? We defined four
functions in the previous chapter. Which ones are part of the domain in
Zettai?

We can list them here with their signature:

Hub/SpokeFunction TypeFunction Name

spoke(Request)-> Pair<User, ListName>extractListData

hub(Pair<User, ListName>) -> ToDoListfetchListContent

spoke(ToDoList) -> HtmlPagerenderHtml

• Click HERE to purchase this book now. discuss

Separating the Domain from the Infrastructure • 7

http://pragprog.com/titles/uboop
http://forums.pragprog.com/forums/uboop

Hub/SpokeFunction TypeFunction Name

spoke(HtmlPage) -> ResponsecreateResponse

If we consider our types: User, ListName, and ToDoList are part of our domain
model, while HtmlPage, Request, and Response are technical details of our imple-
mentation. If unsure, a simple test is to check which names can emerge if we
describe our business to a nontechnical person.

The functions that have a domain type both as input and output are part of
our domain; in our case, there is only one. The others are part of the spokes
that connect the hub with the external world.

So, we create an equivalent to the fetchListContent function inside the hub. Let’s
start writing a test to see how we would like to use our hub:

@Test
fun `get list by user and name`() {

val hub = ZettaiHub(listMap)

val myList = hub.getList(user, list.listName)

expectThat(myList).isEqualTo(list)
}

Let’s proceed, defining our ZettaiHub interface. We need only one function from
the inside of the hub to the external, the one to retrieve a ToDoList:

interface ZettaiHub {
fun getList(user: User, listName: ListName): ToDoList?

}

When implementing the hub interface, it’s important to keep in mind two
things:

• The inside of the hub should stay functionally pure, without any side
effects and external interactions.

• The hub needs external functions to complete the functionality, so we
need to provide them from the outside.

Now we can implement the hub for the ToDoList. It gets the map of to-do lists
and users in the constructor and implements our function:

class ToDoListHub(val lists: Map<User, List<ToDoList>>): ZettaiHub {

override fun getList(user: User, listName: ListName): ToDoList? =
lists[user]
?.firstOrNull { it.listName == listName }

}

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/uboop
http://forums.pragprog.com/forums/uboop

Joe asks:

Isn’t It Premature to Create the Hub Interface Now?
It may seem excessive to create an interface with a single method and a single
implementation, but it’s simpler and faster to enforce a clean design from the beginning
rather than retrofit it later in a poorly designed application.

The key point here is that we aren’t trying to guess future needs; that would be against
the principles of lean development. What we’re doing is defining and respecting a
principle (namely the separation between domain and infrastructure) from the very
beginning, in the simplest possible way.

Then we pass the hub to the Zettai class constructor, in lieu of the map of
lists:

data class Zettai(val hub: ZettaiHub): HttpHandler{

//rest of the methods...

fun fetchListContent(listId: Pair<User, ListName>): ToDoList =
hub.getList(listId.first, listId.second)
?: error("List unknown")

}

Note that the Actions interface of our acceptance tests has a method with
exactly the same signature. This isn’t a coincidence; if we’re keeping our tests
close to the domain, the actor’s actions will be quite similar to the methods
of the hub.

Now we have good acceptance tests and a clean design with the domain sep-
arated from the adapters. We can take advantage of this fact and add another
tool to our toolkit.

• Click HERE to purchase this book now. discuss

Separating the Domain from the Infrastructure • 9

http://pragprog.com/titles/uboop
http://forums.pragprog.com/forums/uboop

