Extracted from:

Pragmatic Unit Testing
in Java 8 with JUnit

This PDF file contains pages extracted from Pragmatic Unit Testingin Java 8 with
JUnit, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.
Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Th
Pra ematic

ogrammers

Pragmatic Unit Testin
in Java 8 with JUnit

Jeff Langr
with Andy Hunt
& Dave Thomas

edited by

Susannah Davidson Pfalzer

38

39 4

llll]\mhm‘m

Pragmatic Unit Testing
in Java 8 with JUnit

Jeff Langr

with Andy Hunt
Dave Thomas

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Eileen Cohen (copyeditor)

Dave Thomas (typesetter)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-94122-259-1

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2015

https://pragprog.com
rights@pragprog.com

Our systems are bloated! You can pick almost any system at random and
spot obvious bits of rampant duplication—whether it's a hundred-line-long
method that’s almost a complete replication from another class or a few lines
of utility code repeated megaumpteen times throughout. The cost of such
duplication is significant: every piece of code duplicated increases the cost to
maintain it, as well as the risk in making a change. You want to minimize
the amount of duplication in your system’s code.

The cost of understanding code is also significant. A change requiring ten
minutes of effort in clear, well-structured code can require hours of effort in
convoluted, muddy code. You want to maximize the clarity in your system’s
code.

You can accomplish both goals—low duplication and high clarity—at a rea-
sonable cost and with a wonderful return on investment. The good news is
that having unit tests can help you reach the goals. In this chapter you'll
learn how to refactor your code with these ideals in mind.

A Little Bit o’ Refactor

If you've recently arrived from Proxima Centauri in a slow warp drive that
required fifteen years of travel time, you might not have heard the term
refactoring. Otherwise, you at least recognize it from the menus in your IDE.
You might even be aware that refactoring your code means you're transforming
its underlying structure while retaining its existing functional behavior.

In other words, refactoring is moving code bits around and making sure the
system still works. Willy-nilly restructuring of code sounds risky! By gosh,
you really want to make sure you have appropriate protection when doing
so. You know...tests.

An Opportunity for Refactoring

Let’s revisit the iloveyouboss code. You wrote a couple of tests with us for it
back in Chapter 2, Getting Real with JUnit, on page ?. As a reminder, here’s

the core matches() method from the Profile class:

iloveyouboss/16/src/iloveyouboss/Profile.java
public boolean matches(Criteria criteria) {
score = 0;

boolean kill = false;
boolean anyMatches = false;
for (Criterion criterion: criteria) {
Answer answer = answers.get(
criterion.getAnswer().getQuestionText());

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2
http://forums.pragprog.com/forums/utj2

Yvy

°6

boolean match =
criterion.getWeight() == Weight.DontCare ||
answer.match(criterion.getAnswer());
if (!match && criterion.getWeight() == Weight.MustMatch) {
kill = true;

}
if (match) {
score += criterion.getWeight().getValue();

}

anyMatches |= match;

}
if (kill)

return false;
return anyMatches;

}

The method isn’t particularly long, weighing in at around a dozen total lines
of expressions and/or statements. Yet it’s reasonably dense, embodying quite
a bit of logic. We were able to add five more test cases behind the scenes.

Extract Method: Your Second-Best Refactoring Friend

(Okay, we'll kill the mystery before you go digging in the index.... Your best
refactoring friend is rename, whether it be a class, method, or variable of any
sort. Clarity is largely about declaration of intent, and good names are what
impart clarity best in code.)

Our goal: reduce complexity in the matches() method so that we can readily
understand what it’s responsible for—its policy. We do that in part by
extracting detailed bits of logic to new, separate methods.

Conditional expressions often read poorly, particularly when they are complex.
An example is the assignment to match that appears in the for loop in matches():

iloveyouboss/16/src/iloveyouboss/Profile.java
for (Criterion criterion: criteria) {
Answer answer = answers.get(
criterion.getAnswer().getQuestionText());
boolean match =
criterion.getWeight() == Weight.DontCare ||
answer.match(criterion.getAnswer());
// ...
}

Isolate the complexity of the assignment by extracting it to a separate method.
You're left with a simple declaration in the loop: the match variable represents
whether or not the criterion matches the answer:

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2
http://forums.pragprog.com/forums/utj2

YYVY

A Little Bit o’ Refactor ® 7

iloveyouboss/17/src/iloveyouboss/Profile.java
public boolean matches(Criteria criteria) {
score = 0;

boolean kill = false;
boolean anyMatches = false;
for (Criterion criterion: criteria) {
Answer answer = answers.get(
criterion.getAnswer().getQuestionText());
boolean match = matches(criterion, answer);

if (!match && criterion.getWeight() == Weight.MustMatch) {
kill = true;

}

if (match) {
score += criterion.getWeight().getValue();

}

anyMatches |= match;
}
if (kill)

return false;
return anyMatches;

}

private boolean matches(Criterion criterion, Answer answer) {
return criterion.getWeight() == Weight.DontCare ||
answer.match(criterion.getAnswer());

}

If you need to know the details of how a criterion matches an answer, you
can navigate into the newly extracted matches() method. Extracting lower-level
details removes distracting clutter if you need only understand the high-level
policy for how a Profile matches against a Criteria object.

It's way too easy to break functionality when moving code about. You need
the confidence to know that you can change code and not introduce sneaky
little defects that aren’t discovered until much later.

Fortunately, the tests written for Profile (see Chapter 2, Getting Real with JUnit,

small change, you run your fast set of tests—it’s cheap, easy, and fun.

The ability to move code about safely is one of the most important benefits
of unit testing. It allows you to add new features safely, and it also allows you
to make changes that keep the design in good shape. In the absence of suffi-
cient tests, you’ll tend to make fewer changes. Or you’ll make changes that
are highly risky.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/utj2/code/iloveyouboss/17/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2
http://forums.pragprog.com/forums/utj2

°8

Finding Better Homes for Our Methods

Our loop is a bit easier to read—great! But we note that the newly extracted
code in matches() doesn’t have anything to do with the Profile object itself. It
seems that either the Answer class or the Criterion class could be responsible for
determining when one matches another.

Move the newly extracted matches() method to the Criterion class. Criterion objects
already know about Answer objects, but the converse is not true—Answer is not
dependent on Criterion. If you were to move matches() to Answer, you'd have a
bidirectional dependency. Not cool.

Here’s matches() in its new home:

iloveyouboss/18/src/iloveyouboss/Criterion.java
public class Criterion implements Scoreable {
/7 ...
public boolean matches(Answer answer) {
return getWeight() == Weight.DontCare ||
answer.match(getAnswer());

}
And here’s what the loop looks like after the move:

iloveyouboss/18/src/iloveyouboss/Profile.java
for (Criterion criterion: criteria) {
Answer answer = answers.get(
criterion.getAnswer().getQuestionText());
boolean match = criterion.matches(answer);

if (!match && criterion.getWeight() == Weight.MustMatch) {
kill = true;

}

if (match) {
score += criterion.getWeight().getValue();

}

anyMatches |= match;

}
The statement that assigns into the answer local variable is quite a mouthful:

iloveyouboss/18/src/iloveyouboss/Profile.java
Answer answer = answers.get(
criterion.getAnswer().getQuestionText());

It suffers for violating the Law of Demeter (which roughly says to avoid
chaining together method calls that ripple through other objects), and it's
simply not clear.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/utj2/code/iloveyouboss/18/src/iloveyouboss/Criterion.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/18/src/iloveyouboss/Profile.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/18/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2
http://forums.pragprog.com/forums/utj2

>
>
>

Finding Better Homes for Our Methods ® 9

A first step toward improving things is to extract the right-hand-side expres-
sion of the answer assignment to a new method whose name, answerMatching(),
better explains what’s going on:

iloveyouboss/19/src/iloveyouboss/Profile.java
public boolean matches(Criteria criteria) {
score = 0;

boolean kill = false;

boolean anyMatches = false;

for (Criterion criterion: criteria) {
Answer answer = answerMatching(criterion);
boolean match = criterion.matches(answer);

if (!match && criterion.getWeight() == Weight.MustMatch) {
kill = true;

}

if (match) {
score += criterion.getWeight().getValue();

}

anyMatches |= match;
}
if (kill)

return false;
return anyMatches;
}

private Answer answerMatching(Criterion criterion) {
return answers.get(criterion.getAnswer().getQuestionText());
}

Temporary variables have a number of uses. You might be more accustomed
to temporaries that cache the value of an expensive computation or collect
things that change throughout the body of a method. The answer temporary
variable does neither, but another use of a temporary variable is to clarify
the intent of code—a valid choice even if the temporary is used only once.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/utj2/code/iloveyouboss/19/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2
http://forums.pragprog.com/forums/utj2

