
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Using the Core Assertion Forms
The bulk of your assertions will use either assertTrue or assertEquals. Let’s review
and refine your knowledge of these two assertion workhorses. Let’s also see
how to keep your tests streamlined by eliminating things that don’t add value.

The Most Basic Assertion Form: assertTrue
The most basic assert form accepts a boolean expression or reference as an
argument, and fails the test if that argument evaluates to false.

org.junit.jupiter.api.Assertions.assertTrue(someBooleanExpression);

Here’s an example demonstrating the use of assertTrue:

utj3-junit/01/src/test/java/scratch/AnAccount.java
@Test
void hasPositiveBalanceAfterInitialDeposit() {

var account = new Account("an account name");

account.deposit(50);

Assertions.assertTrue(account.hasPositiveBalance());
}
// ...

Technically you could use assertTrue for every assertion you had to write. But
an assertTrue failure tells you only that the assertion failed and nothing more.
Seek more precise assertions such as assertEquals, which reports what was
expected vs. what was actually received when it fails. You’ll find test failures
easier to understand and resolve as a result.

Eliminating Clutter
As documents that you’ll spend time reading and re-reading, you’ll want to
streamline your tests. You learned in the first chapter (see Chapter 1, Building
Your First JUnit Test, on page ?) that the public keyword is unnecessary when
declaring both JUnit test classes and test methods. Such additional keywords
and other unnecessary elements represent clutter.

Streamline your tests by eliminating unnecessary clutter.

You’ll be scanning lots of tests to gain rapid understanding of what your
system does and where your changes must go. Getting rid of clutter makes
it easier to understand tests at a glance.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/utj3/code/utj3-junit/01/src/test/java/scratch/AnAccount.java
http://pragprog.com/titles/utj3
http://forums.pragprog.com/forums/utj3

Asserts pervade JUnit tests. Rather than explicitly scope each assert call with
the class name (Assertion), use a static import:

import static org.junit.jupiter.api.Assertions.assertTrue;

The result is a de-cluttered, more-concise assertion statement:

utj3-junit/01/src/test/java/scratch/AnAccount.java
@Test
void hasPositiveBalanceAfterInitialDeposit() {

var account = new Account("an account name");

account.deposit(50);

assertTrue(account.hasPositiveBalance());➤

}

Generalized Assertions
Here’s another example of assertTrue which explains how a result relates to
some expected outcome:

utj3-junit/01/src/test/java/scratch/AnAccount.java
@Test
void depositIncreasesBalance() {

var account = new Account("an account name");
var initialBalance = account.getBalance();

account.deposit(100);

assertTrue(account.getBalance() > initialBalance);
}

A test name—depositIncreasesBalance—is a general statement about the behavior
you want the test to demonstrate. Its assertion—assertTrue(balance > initialBal-
ance)—corresponds to the test name, ensuring that the balance has increased
as an outcome of the deposit operation. The test does not explicitly verify by
how much the balance increased. As a result, you might describe its assert
statement as a generalized assertion.

Eliminating More Clutter
The preceding examples depend on the existence of an initialized Account
instance. You can create an Account in a @BeforeEach method (see Initializing
with @BeforeEach and @BeforeAll, on page ? for more information) and store
a reference to it as a field on the test class:

utj3-junit/02/src/test/java/scratch/AnAccount.java
class AnAccount {

Account account;

@BeforeEach

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/utj3/code/utj3-junit/01/src/test/java/scratch/AnAccount.java
http://media.pragprog.com/titles/utj3/code/utj3-junit/01/src/test/java/scratch/AnAccount.java
http://media.pragprog.com/titles/utj3/code/utj3-junit/02/src/test/java/scratch/AnAccount.java
http://pragprog.com/titles/utj3
http://forums.pragprog.com/forums/utj3

void createAccount() {
account = new Account("an account name");

}

@Test
void hasPositiveBalanceAfterInitialDeposit() {

account.deposit(50);

assertTrue(account.hasPositiveBalance());
}
// ...

}

JUnit creates a new instance of the test class for each test (see Observing the
JUnit Lifecycle, on page ? for further explanation>). That means you can
also safely initialize fields at their point of declaration:

utj3-junit/03/src/test/java/scratch/AnAccount.java
class AnAccount {

Account account = new Account("an account name");

@Test
void hasPositiveBalanceAfterInitialDeposit() {

// ...
}
// ...

}

Use assertEquals for Explicit Comparisons
Your test names should be generalizations of behavior, but each test should
present a specific example with a specific result. If the test makes a deposit,
you know what the new balance amount should be. In most cases, you should
be explicit with your assertion and verify the actual new balance.

The assertion assertEquals compares an expected answer to the actual answer,
allowing you to explicitly verify an outcome’s value. It’s overloaded so that
you can appropriately compare all primitive types, wrapper types, and object
references. (To compare two arrays, use assertArrayEquals instead.) Most of your
assertions should probably be assertEquals.

Here’s the deposit example again, asserting by how much the balance
increased:

utj3-junit/01/src/test/java/scratch/AnAccount.java
@Test
void depositIncreasesBalanceByAmountDeposited() {

account.deposit(50);

account.deposit(100);

assertEquals(150, account.getBalance());

• Click HERE to purchase this book now. discuss

Using the Core Assertion Forms • 5

http://media.pragprog.com/titles/utj3/code/utj3-junit/03/src/test/java/scratch/AnAccount.java
http://media.pragprog.com/titles/utj3/code/utj3-junit/01/src/test/java/scratch/AnAccount.java
http://pragprog.com/titles/utj3
http://forums.pragprog.com/forums/utj3

}

You design the example for each test and you know the expected outcome.
Encode it in the test with assertEquals.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/utj3
http://forums.pragprog.com/forums/utj3

