
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Organizing Related Tests into Nested Classes
As your classes grow by taking on more behaviors, you’ll need more and more
tests to describe the new behaviors. Use your test class size as a hint: If you
declare several dozen tests in one test source file, chances are good that the
class under test is too large. Consider splitting the production class up into
two or more classes, which also means you’ll want to split the test methods
across at least two or more test classes.

You may still end up with a couple dozen test methods in one test class. A
larger test class can not only be daunting from a navigational sense, but it
can also make it harder to find all tests that relate to each other.

To help group related tests, you might consider starting each related test’s
name with the same thing. Here are three tests describing how withdrawals
work in the Account class:

@Test void withdrawalReducesAccountBalance() { /* ... */ }
@Test void withdrawalThrowsWhenAmountExceedsBalance() { /* ... */ }
@Test void withdrawalNotifiesIRSWhenAmountExceedsThreshold() { /* ... */ }

A better solution, however: Group related tests within a JUnit @Nested class:

@Nested
class Withdrawal {

@Test void reducesAccountBalance() { /* ... */ }
@Test void throwsWhenAmountExceedsBalance() { /* ... */ }
@Test void notifiesIRSWhenAmountExceedsThreshold() { /* ... */ }

}

You can create a number of @Nested classes within your test class, similarly
grouping all methods within it. The name of the nested class, which describes
the common behavior, can be removed from each test name.

You can also use @Nested classes to group tests by context—the state
established by the arrange part of a test. For example:

class AnAccount
@Nested
class WithZeroBalance {

@Test void doesNotAccrueInterest() { /* ... */ }
@Test void throwsOnWithdrawal() { /* ... */ }

}

@Nested
class WithPositiveBalance {

@BeforeEach void fundAccount() { account.deposit(1000); }
@Test void accruesInterest() { /* ... */ }
@Test void reducesBalanceOnWithdrawal() { /* ... */ }

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/utj3
http://forums.pragprog.com/forums/utj3

}
}

Tests are split between those needing a zero-balance account (WithZeroBal-
ance) and those needing a positive account balance (WithPositiveBalance).

Observing the JUnit Lifecycle
You’ve learned about using before-and-after hooks, as well as how to group
related tests into nested classes. Using a skeleton test class, let’s take a look
at how these JUnit elements are actually involved when you run your tests.

AFundedAccount contains six tests. Per its name, all tests can assume that
an account exists and has a positive balance. An account object gets created
at the field level and subsequently funded within a @BeforeEach method.
Here’s the entire AFundedAccount test class, minus all the intricate details
of each test.

utj3-junit/01/src/test/java/scratch/AFundedAccount.java
import org.junit.jupiter.api.*;

class AFundedAccount {
Account account = new Account("Jeff");
AFundedAccount() {

// ...
}

@BeforeEach
void fundAccount() {

account.deposit(1000);
}

@BeforeAll
static void clearAccountRegistry() {

// ...
}

@Nested
class AccruingInterest {

@BeforeEach
void setInterestRate() {

account.setInterestRate(0.027d);
}

@Test
void occursWhenMinimumMet() {

// ...
}

@Test
void doesNotOccurWhenMinimumNotMet() {

// ...

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/utj3/code/utj3-junit/01/src/test/java/scratch/AFundedAccount.java
http://pragprog.com/titles/utj3
http://forums.pragprog.com/forums/utj3

}

@Test
void isReconciledWithMasterAccount() {

// ...
}

}

@Nested
class Withdrawal {

@Test
void reducesAccountBalance() {

// ...
}

@Test
void throwsWhenAmountExceedsBalance() {

// ...
}

@Test
void notifiesIRSWhenAmountExceedsThreshold() {

// ...
}

}
}

While you could choose to instantiate the account field in a @BeforeEach
method, there’s nothing wrong with doing field-level initialization, particularly
if there’s not much going on. The field declaration in AFundedAccount initial-
izes an account with some arbitrary name, so it’s not interesting enough to
warrant a @BeforeEach method. But if your common initialization is at all
interesting or requires a series of statements, you’d definitely want it to occur
within a @BeforeEach method.

The use of @Nested makes for nicely organized test results when you run
your tests:

• Click HERE to purchase this book now. discuss

Organizing Related Tests into Nested Classes • 5

http://pragprog.com/titles/utj3
http://forums.pragprog.com/forums/utj3

You can clearly see the grouping of related tests, which makes it easier to
find what you’re looking for. The visual grouping also makes it easier to spot
the glaring absence of necessary tests, as well as review their names for
consistency—with other tests or with your team’s standards for how tests are
named.

I instrumented each of the @BeforeEach methods, the @Test methods, and
the constructors (implicitly defined in the listing) with System.out statements.
Here’s the output when the tests are run:

@BeforeAll::clearAccountRegistry
AFundedAccount(); Jeff balance = 0

Withdrawal
@BeforeEach::fundAccount
notifiesIRSWhenAmountExceedsThreshold

AFundedAccount(); Jeff balance = 0
Withdrawal

@BeforeEach::fundAccount
reducesAccountBalance

AFundedAccount(); Jeff balance = 0
Withdrawal

@BeforeEach::fundAccount
throwsWhenAmountExceedsBalance

AFundedAccount(); Jeff balance = 0
Accruing Interest

@BeforeEach::fundAccount
@BeforeEach::setInterestRate
occursWhenMinimumMet

AFundedAccount(); Jeff balance = 0

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/utj3
http://forums.pragprog.com/forums/utj3

Accruing Interest
@BeforeEach::fundAccount
@BeforeEach::setInterestRate
accruesNoInterestWhenMinimumMet

AFundedAccount(); Jeff balance = 0
Accruing Interest

@BeforeEach::fundAccount
@BeforeEach::setInterestRate
doesNotOccurWhenMinimumNotMet

The static @BeforeAll method executes first.

The output shows that a new instance of AFundedAccount is constructed for
each test executed. It also shows that the account is, as expected, properly
initialized with a name and zero balance.

Creating a new instance for each test is part of JUnit’s deliberate design. It
helps ensure each test is isolated from side-effects that other tests might
create.

JUnit creates a new instance of the test class for each test method
that runs.

The @BeforeEach method fundAccount, declared within the top-level scope of
the AFundedAccount class, executes prior to each of all six tests.

The @BeforeEach method setInterestRate, declared within the scope of
AccruingInterest, executes only prior to each of the three tests defined within
that nested class.

• Click HERE to purchase this book now. discuss

Organizing Related Tests into Nested Classes • 7

http://pragprog.com/titles/utj3
http://forums.pragprog.com/forums/utj3

