
Extracted from:

Business Success with Open Source
Strengthen Your Business with Free and Open Source Software

This PDF file contains pages extracted from Business Success with Open Source,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas

http://www.pragprog.com

Business Success with Open Source
Strengthen Your Business with Free and Open Source Software

VM (Vicky) Brasseur

The Pragmatic Bookshelf
Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 979-8-88865-049-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—October 12, 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 4

Avoid Common FOSS Business Risks
There’s a reason so many companies and organisations are investing in their
open source strategies and programs: doing so brings a host of benefits. You’ll
learn about those benefits in Chapter 5, Strengthen Your Business Through
FOSS, on page ?, but first we need to get something out of the way. I won’t
sugar-coat it: For all the benefits of a FOSS strategy there are just as many
risks.

Business is inherently risky; FOSS in business is no different. In both cases
the risks are avoidable with education, intention, and attention. In this
chapter you’ll receive the facts about those risks (education) without fear-
mongering. In future chapters you’ll learn not only how to avoid those risks
but also how to convert them to benefits (with intention and attention).

Supply Chain Awareness
When many companies start to think about FOSS with respect to their busi-
ness, they immediately jump to the idea of releasing projects. This thought
process often sounds like, “Let’s release this software! Everyone will show up
and use it and love it and give us a lot of free work and advertising!” Other
times, the thoughts are, “We have this software lying around. We don’t really
use it anymore so let’s release it as an open source project and let it be
someone else’s problem. Then our company will get attention for releasing
it.” Recently though, the thoughts have trended toward, “We’re building a
company around this software. Let’s give it away for free as a FOSS project,
drive traffic to the website and gain name recognition, then figure out how to
convert that into profit.” The Releasing-FOSS-Means-Profit stars in the eyes
of these business leaders are blocking them from seeing the more obvious
opportunities right in front of them. For the majority of businesses, the lowest

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vbfoss
http://forums.pragprog.com/forums/vbfoss

hanging fruit where FOSS is concerned is not releasing FOSS projects but
instead gaining awareness of the FOSS that they are already using.

As mentioned in Chapter 1, Lay the Foundation, on page ?, if your company
is building or using software then it’s already using free and open source
components. Despite this, the majority of companies have no idea what sort
of FOSS is in play within their organization. Teams need to get their jobs done
and FOSS enables them to do that more efficiently, so the teams use FOSS
components then they move on to their next task. Meanwhile, these compo-
nents continue chugging along in the background, unknown, untracked, and
unnoticed…and potentially holding the door open for all sorts of unsavoury
and potentially devastating risks.

Therefore, before considering what software to release, companies should
first look to see what software they’re using. The almost complete lack of
awareness of their FOSS software supply chain is a gaping hole in their
overall strategy and can sink them as readily as a poor product launch.

License Compliance
Thanks to the attention it’s received over the decades of free and open source
software, when someone in a business hears the phrase “FOSS risks” they
usually think about licenses and license compliance. This is largely due to
the GPL/Copyleft/Reciprocal license fear mongering led by certain large cor-
porations in the 1990s and early 2000s. Approaches such as calling free
software “a cancer” caused many business leaders to create policies designed
to restrict or prevent FOSS usage within their organisations. In many cases
these policies were largely performative, as software developers in these
companies found ways to use FOSS components anyway—often doing so on
the sly—usually for pragmatic rather than nefarious reasons. While both the
establishment and the breaking of the policies may have been well-intentioned,
both actions led to invisible links in these companies’ software supply chains.

As you learned in Chapter 3, Licenses: The Rules of IP Engagement, on page
?, software licensing is a complicated thing. Usually, simply using the soft-
ware reflects acceptance of the license and its terms and conditions. If you’re
not aware of what software you’re using, you can’t know what terms and
conditions you’ve accepted. Your company may be making promises that it
either cannot or is not prepared to keep.

On the other hand, the components in your company’s software supply chain
may not be licensed at all. A woeful number of seemingly “open source”
projects are released without any license. Often this happens because the

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vbfoss
http://forums.pragprog.com/forums/vbfoss

project maintainers are eager to share their work with the world but lack
basic knowledge about copyright, licenses, and their importance. They don’t
realise that, legally, no one is allowed to use the work they’ve shared unless
they’ve given permission via a license. Software developers in your company
share this lack of basic knowledge about copyright and licenses. Not having
been trained to look for and be aware of the licenses on the software that they
use, and being motivated to complete their assigned tasks, they will gladly
use these “open” software components despite not having the legal right to
do so.

Risks

• Unknown license obligations. The company is using software
but is unaware of the obligations to which it has agreed by
doing so.

• Infringing creator copyright. Using software without an explicit
permission (license) to do so is illegal under copyright law.

• Expensive legal fallout. Lawsuits over infringed copyright or
unmet license obligations can be expensive both in time and
money. They also can damage your company’s brand.

• Expensive software rearchitecture. Removing and rearchitecting
around problematic software components can affect product
availability and stability, leading to lower customer satisfaction.
It also prevents software developers from using that time to
fix other bugs and add new features.

Security
Gather ‘round, friends, and hear the sad tale of Equifax. Like pretty much all
companies, Equifax uses FOSS in its business operations. In fact, its credit
dispute website relied heavily on a FOSS project called Apache Struts. In
early 2017 the Struts community located and fixed a major security vulnera-
bility and told all project users to update to the latest version immediately.
Many did. Equifax, alas, did not. Criminals used this Struts vulnerability to
gain access to the Equifax systems. Over a series of months the criminals
stole the private information of more than 150 million individuals, which is
believed to be the largest data breach in history (so far). They were stopped
when Equifax finally updated the version of Struts used in their software.
While there were other factors that contributed to the scope of this breach—for
instance, the internal systems were not configured for isolation and prevention

• Click HERE to purchase this book now. discuss

Security • 5

http://pragprog.com/titles/vbfoss
http://forums.pragprog.com/forums/vbfoss

of cross-contamination—the fact remains that Equifax’s failure to keep their
FOSS supply chain up to date opened the door to an act that harmed millions
of people.

It’s a terrible tale of woe, and one that cost Equifax dearly, but unfortunately
they’re in good company. Criminals frequently exploit software security vul-
nerabilities to steal information and/or extort their victims. Not all of these
vulnerabilities are in FOSS projects, but due to the prevalance of FOSS in
software development a decent percentage of them are. The good news is that
free and open source projects typically locate and patch security holes much
more rapidly than proprietary software. The bad news is that many companies,
lacking awareness of their software supply chains, fail to notice this. An
invisible or overlooked link in that supply chain may hide a ticking time bomb
that can have a blast radius that includes your customers.

Some might try to take comfort in the fact that if they don’t know what links
are in their software supply chains then neither do the criminals, so of course
their systems must be safe. This couldn’t be further from the truth, as
“security through obscurity” is little more than security theatre. Criminals,
you see, don’t need to know what’s in a company’s software supply chain. All
they need to do is run their exploit against as many companies’ systems as
possible and inevitably they’ll find some that they can compromise. While
criminals don’t need to be aware of your software supply chain to break in
and loot your systems, the only possible way for your company to prevent
that looting is via supply chain awareness and maintenance. Otherwise you’re
one bad day from becoming the next Equifax.

This awareness and maintenance, by the way, includes software run in con-
tainers. To over-simplify it, a container is a self-contained snapshot of a
running software system. This snapshot is easy to share, making it relatively
simple to distribute software and even simpler to run it. Everything necessary
for the software’s operation is included in the container and correctly config-
ured, so usually it “just works.” The most common methods for sharing and
running containers are images and files. The image is an immutable and
opaque snapshot; practically speaking you don’t simply open this container
and look inside to see what’s inside it. The file is a recipe for building the
snapshot; it’s text-based and therefore less immutable and opaque. The
problem with both methods is that often they don’t receive either the necessary
awareness or maintenance. Is that container image running an old and
compromised version of a FOSS component? Was that container file updated
to build with the latest security patches applied? How do you know? All too
often, the answer to that question is, “you don’t.”

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vbfoss
http://forums.pragprog.com/forums/vbfoss

Risks

• Invisible attack vectors. Ignorance of the software in use leaves
the company systems vulnerable to criminal activity.

• Out of date software. Neglecting software updates exposes the
company (and its customers) to data breach via unpatched
security holes.

• Opaque containers. Blindly using containers without knowing
what software (and versions) they’re running increases the
invisible links in the software supply chain.

Liability
What you see below is an example of a Disclaimer of Warranty, excerpted from
one of the most popular free and open source licenses. Basically, these dis-
claimers say that if you use the software and something goes wrong, then on
your head be it. The creators of and contributors to the software wash their
hands of the whole situation. You deal with it and bear the entire burden of
correcting any problems, either express or implied.

Apache-2.0:

Unless required by applicable law or agreed to in writing, Licensor provides the
Work (and each Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.
You are solely responsible for determining the appropriateness of using or redis-
tributing the Work and assume any risks associated with Your exercise of permis-
sions under this License.

Such a disclaimer is standard fare in FOSS licenses, so much so that few if
any of the most popular licenses lack one. The thing is–and this is implied
in the excerpted text above–these disclaimers aren’t valid in all jurisdictions
(“applicable law”). If your jurisdiction isn’t one of those where the disclaimer
is invalid, you may have little recourse should something go awry due to your
use of the software.

In most cases, the worst case scenario isn’t really all that bad (relatively
speaking). Perhaps your company will have to refresh its database from a
backup because data was corrupted by a poorly written software component,
or rearchitect its solution because a critical component contains a memory

• Click HERE to purchase this book now. discuss

Liability • 7

http://pragprog.com/titles/vbfoss
http://forums.pragprog.com/forums/vbfoss

leak. These are inconvenient and perhaps expensive and disruptive to business
operations, but are recoverable. It’s not like anyone died, after all.

But consider the example of a self-driving car that strikes and kills a pedes-
trian because of bugs in the machine learning and artificial intelligence
components used in the self-driving software. Who’s liable for it? Is it the
company that built the car? The one that wrote the self-driving software? The
human co-pilot? The human who chose to use the buggy components? The
authors of the components themselves? If those components are FOSS and
use licenses with Disclaimer of Warranty clauses, are those authors protected
from liability in this situation despite the disclaimer? This is a serious situa-
tion, after all; someone died because of that car.

This is obviouly a matter for the courts to decide, and as they do so they’ll
find surprisingly few cases for precedent. It’s not that the matter hasn’t come
up, simply that it hasn’t especially been adjudicated. This leaves the matter
of liability open to considerable interpretation.

Risks

• Unaware of disclaimers of warranty. If the company has
invisible links in its software supply chain, it also may have
invisible disclaimers of warranty in system-critical components.

• Unclear extent of liability. The variation in applicability of these
disclaimers based on jurisdiction, as well as the relative lack
of case law on the subject, leaves the matter of liability in a
fog.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vbfoss
http://forums.pragprog.com/forums/vbfoss

