
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

CHAPTER 4

Avoid Common FOSS Business Risks
So many companies and organizations are investing in their open source
strategies and programs—and for good reason: doing so brings a host of
benefits. You’ll learn about those benefits in Chapter 5, Strengthen Your
Business Through FOSS, on page ?, but first we need to get something out
of the way. I won’t sugarcoat it: for all the benefits of a FOSS strategy, there
are just as many risks.

Business is inherently risky; FOSS in business is no different. In both cases
the risks are avoidable with education, intention, and attention. In this
chapter you’ll receive the facts about those risks (education) without fearmon-
gering. In future chapters you’ll learn not only how to avoid those risks but
also how to convert them to benefits (with intention and attention). If you’re
facing these risks right now and trying to figure out what to do about them,
each risk section includes references to the parts of the book that will help
you out of your jam.

Inbound FOSS Risks
These risks fall largely into the same categories as other topics in this book:
inbound FOSS and outbound FOSS. Also like this book, you’ll learn about
the inbound FOSS items first.

Supply Chain Awareness
When many companies start to think about FOSS with respect to their busi-
ness, they immediately jump to the idea of releasing projects. This thought
process often sounds like, “Let’s release this software! Everyone will show up
and use it and love it and give us a lot of free work and advertising!” Other
times, the thoughts are, “We have this software lying around. We don’t really
use it anymore, so let’s release it as an open source project and let it be

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vbfoss
http://forums.pragprog.com/forums/vbfoss

someone else’s problem. Then our company will get attention for releasing
it.” Recently though, the thoughts have trended toward, “We’re building a
company around this software. Let’s give it away for free as a FOSS project,
drive traffic to the website and gain name recognition, then figure out how to
convert that into profit.”

The Releasing-FOSS-Means-Profit stars in the eyes of these business leaders
are blocking them from seeing the more obvious opportunities right in front
of them. For the majority of businesses, the lowest hanging fruit where FOSS
is concerned is not releasing FOSS projects but instead gaining awareness
of the FOSS that they’re already using.

As mentioned in Chapter 1, Lay the Foundation, on page ?, if your company
is building or using software, then it’s already using free and open source
components. You may not think you are, but trust me, FOSS is there. For
instance, your software development team may use Git, a version control
system released as Free Software. The company website may be based on
WordPress, the most popular content management system in the world (and
FOSS).

The majority of companies have no idea what sort of FOSS is in play within
their organization. Teams need to get their jobs done, and FOSS enables them
to do that more efficiently, so the teams use FOSS components then they
move on to their next task. Meanwhile, these components continue chugging
along in the background, unknown, untracked, and unnoticed—and poten-
tially holding the door open for all sorts of unsavory and potentially devastating
risks.

Therefore, before considering what software to release, companies should
first look to see what software they’re using. The almost complete lack of
awareness of their FOSS software supply chain is a gaping hole in their
overall strategy and can sink them as readily as a poor product launch.

Risks

• Invisible links in software supply chain. It’s always difficult
when a link breaks in your supply chain, but invisible links
raise the stakes considerably.

• Compromised security. Invisible links in the software supply
chain don’t receive security updates and are more susceptible
to criminals.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vbfoss
http://forums.pragprog.com/forums/vbfoss

Risks

• Unknown license obligations. The company is using software
but is unaware of the obligations to which it has agreed by
doing so.

• Infringing creator copyright. Using software without an explicit
permission (license) to do so is illegal under copyright law.

Where to find help:

• Chapter 11, Know the Links in Your Software Supply Chain,
on page ?.

License Compliance
Thanks to the attention it’s received over the decades of free and open source
software, when someone in a business hears the phrase “FOSS risks” they
usually think about licenses and license compliance. This is largely due to
the GPL/Copyleft/Reciprocal license fearmongering led by certain large cor-
porations in the 1990s and early 2000s. Approaches such as calling Free
Software “a cancer” caused many business leaders to create policies designed
to restrict or prevent FOSS usage within their organizations. In many cases
these policies were largely performative, as software developers in these
companies found ways to use FOSS components anyway—often doing so on
the sly—usually for pragmatic rather than nefarious reasons. While both the
establishment and breaking of the policies may have been well-intentioned,
both actions led to invisible links in these companies’ software supply chains.

As you learned in Chapter 3, Licenses: The Rules of IP Engagement, on page
?, software licensing is complicated. Usually, simply using the software
reflects acceptance of the license and its terms and conditions. If you’re not
aware of what software you’re using, you can’t know what terms and condi-
tions you’ve accepted. Your company may be making promises that it either
cannot or is not prepared to keep.

On the other hand, the components in your company’s software supply chain
may not be licensed at all. A woeful number of seemingly open source projects
are released without any license. Often this happens because the project
maintainers are eager to share their work with the world but lack basic
knowledge about copyright, licenses, and their importance. They don’t realize
that, legally, no one is allowed to use the work they’ve shared unless they’ve

• Click HERE to purchase this book now. discuss

Inbound FOSS Risks • 5

http://pragprog.com/titles/vbfoss
http://forums.pragprog.com/forums/vbfoss

given permission via a license. Software developers in your company share
this lack of basic knowledge about copyright and licenses. Not having been
trained to look for and be aware of the licenses on the software that they use,
and being motivated to complete their assigned tasks, many will gladly use
these “open” software components despite not having the legal right to do so.

Risks

• Unknown license obligations. The company is using software
but is unaware of the obligations to which it has agreed by
doing so.

• Infringing creator copyright. Using software without an explicit
permission (license) to do so is illegal under copyright law.

• Expensive legal fallout. Lawsuits over infringed copyright or
unmet license obligations can be expensive both in time and
money. They also can damage your company’s brand.

• Expensive software rearchitecture. Removing and rearchitecting
around problematic software components can affect product
availability and stability, leading to lower customer satisfaction.
It also prevents software developers from using that time to
fix other bugs and add new features.

Where to find help:

• Chapter 11, Know the Links in Your Software Supply Chain,
on page ?

• Chapter 12, Maintain FOSS License Compliance, on page ?

Security
Gather ‘round, friends, and hear the sad tale of Equifax. Like pretty much all
companies, Equifax uses FOSS in its business operations. In fact, its credit
dispute website relied heavily on a FOSS project called Apache Struts. In
early 2017 the Struts community located and fixed a major security vulnera-
bility and told all project users to update to the latest version immediately.
Many did. Equifax, alas, did not. Criminals used this Struts vulnerability to
gain access to the Equifax systems. Over a series of months the criminals
stole the private information of more than 150 million individuals, which is
believed to be the largest data breach in history (so far). They were stopped
when Equifax finally updated the version of Struts used in their software.
While other factors contributed to the scope of this breach—for instance, the

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vbfoss
http://forums.pragprog.com/forums/vbfoss

internal systems weren’t configured for isolation and prevention of cross-
contamination—the fact remains that Equifax’s failure to keep its FOSS
supply chain up-to-date opened the door to an act that harmed millions of
people.

It’s a terrible tale of woe, and one that cost Equifax dearly, but unfortunately
they’re in good company. Criminals frequently exploit software security
vulnerabilities to steal information and/or extort their victims. These vulner-
abilities and security risks exist in proprietary software as much as in FOSS,
but due to the prevalence of FOSS in software development, a decent percent-
age of these vulnerabilities turn up in FOSS components. The good news is
that most free and open source projects prioritize rapidly locating and
patching security. The bad news is that many companies, lacking awareness
of their software supply chains, fail to notice this. An invisible or overlooked
link in that supply chain may hide a ticking time bomb that can have a blast
radius that includes your customers.

Some might try to take comfort in the fact that if they don’t know what links
are in their software supply chains then neither do the criminals, so of course
their systems must be safe. This couldn’t be further from the truth, as
“security through obscurity” is little more than security theater. Criminals,
you see, don’t need to know what’s in a company’s software supply chain. All
they need to do is run their exploit against as many companies’ systems as
possible and inevitably they’ll find some that they can compromise. While
criminals don’t need to be aware of your software supply chain to break in
and loot your systems, the only possible way for your company to prevent
that looting is via supply chain awareness and maintenance. Otherwise you’re
one bad day from becoming the next Equifax.

This awareness and maintenance, by the way, includes software run in con-
tainers. To over-simplify it, a container is a self-contained snapshot of a
running software system. This snapshot is easy to share, making it relatively
simple to distribute software and even simpler to run it. Everything necessary
for the software’s operation is included in the container and correctly config-
ured, so usually it “just works.” The most common methods for sharing and
running containers are images and files. The image is an immutable and opaque
snapshot; practically speaking you don’t simply open this container and look
inside to see what’s inside it. The file is a recipe for building the snapshot;
it’s text-based and therefore less immutable and opaque. The problem with
both methods is that often they don’t receive either the necessary awareness
or maintenance. Is that container image running an old and compromised
version of a FOSS component? Was that container file updated to build with

• Click HERE to purchase this book now. discuss

Inbound FOSS Risks • 7

http://pragprog.com/titles/vbfoss
http://forums.pragprog.com/forums/vbfoss

the latest security patches applied? How do you know? All too often, the
answer to that question is “you don’t.”

Risks

• Invisible attack vectors. Ignorance of the software in use leaves
the company systems vulnerable to criminal activity.

• Out-of-date software. Neglecting software updates exposes the
company (and its customers) to data breach via unpatched
security holes.

• Opaque containers. Blindly using containers without knowing
what software (and versions) they’re running increases the
invisible links in the software supply chain.

Where to find help:

• Chapter 11, Know the Links in Your Software Supply Chain,
on page ?

• Chapter 12, Maintain FOSS License Compliance, on page ?

• The Container Complication, on page ?

Liability
Following is an example of a Disclaimer of Warranty, excerpted from one of
the most popular free and open source licenses. Basically, these disclaimers
say that if you use the software and something goes wrong, then on your
head be it. The creators of and contributors to the software wash their hands
of the whole situation. You deal with it and bear the entire burden of correcting
any problems, either express or implied.

Apache-2.0:

Unless required by applicable law or agreed to in writing, Licensor provides the
Work (and each Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR
PURPOSE. You are solely responsible for determining the appropriateness of using
or redistributing the Work and assume any risks associated with Your exercise
of permissions under this License.

Such a disclaimer is standard fare in FOSS licenses, so much so that few if
any of the most popular licenses lack one. The thing is—and this is implied

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vbfoss
http://forums.pragprog.com/forums/vbfoss

in the excerpted text above—these disclaimers aren’t valid in all jurisdictions
(“applicable law”). If your jurisdiction isn’t one of those where the disclaimer
is invalid, you may have little recourse should something go awry due to your
use of the software.

In most cases, the worst-case scenario isn’t all that bad (relatively speaking).
Perhaps your company will have to refresh its database from a backup because
data was corrupted by a poorly written software component, or rearchitect
its solution because a critical component contains a memory leak. These are
inconvenient and perhaps expensive and disruptive to business operations,
but are recoverable. It’s not like anyone died, after all.

But consider the example of a self-driving car that strikes and kills a pedestrian
because of bugs in the machine learning and artificial intelligence components
used in the self-driving software. Who’s liable for it? Is it the company that
built the car? The one that wrote the self-driving software? The human copilot?
The human who chose to use the buggy components? The authors of the
components themselves? If those components are FOSS and use licenses
with disclaimer of warranty clauses, are those authors protected from liability
in this situation despite the disclaimer? This is a serious situation, after all;
someone died because of that car.

This is obviously a matter for the courts to decide, and as they do so they’ll
find surprisingly few cases for precedent. It’s not that the matter hasn’t come
up, simply that it hasn’t especially been adjudicated. This leaves the matter
of liability open to considerable interpretation.

Risks

• Unaware of disclaimers of warranty. If the company has
invisible links in its software supply chain, it also may have
invisible disclaimers of warranty in system-critical components.

• Unclear extent of liability. The variation in applicability of
these disclaimers based on jurisdiction, as well as the relative
lack of case law on the subject, leaves the matter of liability
in a fog.

Where to find help:

• Chapter 11, Know the Links in Your Software Supply Chain,
on page ?

• Chapter 12, Maintain FOSS License Compliance, on page ?

• Click HERE to purchase this book now. discuss

Inbound FOSS Risks • 9

http://pragprog.com/titles/vbfoss
http://forums.pragprog.com/forums/vbfoss

