Extracted from:

Forge Your Future with Open Source

Build Your Skills. Build Your Network.
Build the Future of Technology.

This PDF file contains pages extracted from Forge Your Future with Open Source,
published by the Pragmatic Bookshelf. For more information or to purchase a
paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Preégnatic
ogramimers

Forge Your Future
with Open Source

Build Your Skills

Build Your Network

g . Build the Future
of Technology

VM (Vicky) Brasseur
edited by Brian MacDonald

Forge Your Future with Open Source

Build Your Skills. Build Your Network.
Build the Future of Technology.

VM (Vicky) Brasseur

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Copy Editor: Paula Robertson
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-301-2
Book version: P1.0—October 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Clone and Branch

The first step in any contribution is to retrieve a local copy of the repository
(repo). In git terminology, this local copy is known as a clone, but some hosting
services use the term fork instead. In the git contribution process, both words
refer to the same step, though the two words can mean different things in a
FOSS context.'"”

FOSS Project
(origin)

FOSS Project
(your clone)

\
Create
branch

)
fix_bug

(your branch)

\

Make
changes

v
fix_bug

(changed branch)

— Clone Repository —

Work
continues...

Feedback Send
<— Merged Loop pull —
request

FOSS Project
(origin + your
changes)

The next step after cloning the repository is to create a branch. When you
create a branch, you name it and figuratively plant a flag in the repository to
say, “I hereby claim everything from here forward in the name selected for
the branch.” As long as you stay on that branch, all of your work will be iso-
lated from every other branch. This allows you to work on multiple different
issues at once (by creating multiple branches), but most importantly, it pre-
vents you from sharing changes that you don’t want to. In the background,
a branch is just a named pointer to a certain git commit, but that’s a level of
detail that you can read up on later if you want.'® The important part is that
a branch is just a pointer, not a copy of the repository. Therefore, branches
in git are cheap, quick, and easy to create and destroy. Easy branches are

12. https://opensource.com/article/17/12/fork-clone-difference

« Click HERE to purchase this book now. discuss

https://opensource.com/article/17/12/fork-clone-difference
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
http://pragprog.com/titles/vbopens
http://forums.pragprog.com/forums/vbopens

°6

one of the big advantages of git over earlier version control systems like
Subversion or CVS.

A common mistake at this point (and one I've made myself in the past) is to
start making changes and working directly on this new copy of the repo. While
this can be OK, the best practice is instead to create a new branch of your
copy of repository and then perform your work on it. This is called using a
Jfeature or topic branch. Feature branches are just branches of a repository
where you perform work on only one thing—one feature—at a time. For
instance, if you're working on an issue, you would create a branch just for
fixing that issue. Once the issue is complete and the pull request has been
accepted, it’s no longer needed. You can delete the branch.

Here’s an example of a new branch created for this chapter of the book:

Pliny:Book brasseur$ git checkout -b makeacontribution
Switched to a new branch 'makeacontribution'

Working in this way enables you to work on multiple features or topics at
once without contaminating the work for one with the work for another. It
allows for a very rigid separation of concerns that prevents committing
unneeded or prototype work. It also allows for much easier updates should
your pull request require some changes before it can be merged. Simply
commit and push new changes to the pull request’s feature branch, and
they’re automatically applied to the request. It’s a tidy and efficient process.

While this is currently the most common approach to making a contribution
to a FOSS project’s repository, it’s by no means the only one. Before you start
your cloning-branching, always make sure to verify the process against the
project’s CONTRIBUTING file.

Atomic Commits

OK, so now you can start working on your contribution. As you do so, make
sure to follow the old adage: Commit early; commit often. Tightly scoped—also
known as atomic—commits are safer commits. With an atomic commit, you
easily can see what you've changed, because your commits are scoped to a
single (usually small) topic, feature, or bug fix. This reduces the risk of con-
tributing unnecessary changes. Atomic commits are also much easier to
review afterward and to back out should something go wrong. When you make
atomic commits, they affect and touch as little of the project as possible,
therefore reducing the potential ripple effects of your changes.

Let’s get metaphorical: Think of your complete contribution as an essay. It’s
composed of different paragraphs, each containing a complete thought, but

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vbopens
http://forums.pragprog.com/forums/vbopens

Atomic Commits ® 7

each also requiring the context of the other paragraphs to meet the overall
goal of the essay. An atomic commit is like a paragraph: it's a complete
thought. Each time you finish a thought, commit it to the repository. If your
contribution requires several different steps to complete (rename variables,
pull duplicate code into a new function, call the new function in the correct
locations), each step should be a separate, small commit. You may end up
with several commits before your contribution is complete, but that’s OK. It’s
much better to commit your work at the end of each thought than to risk
losing all your work by waiting until the end of the contribution to save it to
the repository. Some projects want you to use a squash or rebase feature in
the version control software to consolidate all of those small commits into a
single, larger atomic commit, so make sure to read the CONTRIBUTING file before
submitting your contribution to the project.

Using Version Control for Non-Code Contributions

“But,” you ask, “what if my contribution isn’t code? Do I have to care about
version control systems?”

A very good question! The answer, as you have probably already guessed,
is “Yup.”

Depending on the project, non-code contributions may not be maintained in
the version control system (VCS). Documentation may be in a wiki, for
instance. Designs may be in a shared drive system. It could be that you never
have to use git, Subversion, Mercurial, or any of the other version control
systems that are common across free and open source as well as proprietary
software development.

However, considering how helpful it can be for any project to maintain all its
related files in a single repository, it’s likely that even if your contribution is
not code, you'll still have to submit it to the VCS. Documentation, test plans,
designs, and all other digital resources can be stored and shared using a version
control system. You can even use one for your own personal writing or design
projects. Doing so not only provides off-site backup of these important files,
but it also kills off the Frankenstein’s Monster file naming schemes, such as
logo-new-FINAL-FINAL2-FINALwithedits-FINALapproved-OKreallydonenowhonest.ai. Instead of
changing the file name, you simply commit it to the VCS. All previous versions
are still there for you to access later if needed.

Even if the project does not use a version control system for non-code contri-
butions, it’s still helpful for you to learn about them. You are likely to find
that the majority of community members for most projects are programmers.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vbopens
http://forums.pragprog.com/forums/vbopens

°8

Learning the VCS terminology and how it is used builds empathy with the
programmers, which will make it easier for you to communicate with the
programmers in the project, and for you to understand the overall software
development process. This is particularly helpful if your career path will have
you working with programmers in the office.

So while it may not be necessary for you to learn the details of using a version
control system for your own contributions, learning at least the basics will
make you a more effective contributor and community member.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vbopens
http://forums.pragprog.com/forums/vbopens

