
Extracted from:

Pragmatic Version Control
with CVS

This PDF file contains pages extracts from Pragmatic Version Control, one of

the Pragmatic Starter Kit series of books for project teams. For more

information, visit http://www.pragmaticprogrammer.com/starter_kit.

Note: This extract contains some colored text (particularly in code listing).

This is available only in online versions of the books. The printed versions

are black and white. Pagination might vary between the online and printer

versions; the content is otherwise identical.

Copyright c© 2004 The Pragmatic Programmers, LLC. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any

form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the

prior consent of the publisher.

Chapter 2

What Is Version Control?

A version control system is a place to store all the various re-

visions of the stuff you write while developing an application.

They’re basically very simple systems. Unfortunately, over the

years, various people have started using different terms for

the various components of version control. And this can lead

to confusion. So let’s start off by defining some of the terms

that we’ll be using.

2.1 The Repository

You may have noticed that we wimped out; we said that,

“a version control system is a place to store. . . the stuff you

write,” but we never said exactly where all this stuff is stored.

In fact, it all goes in the repository.

In almost all version control systems, the repository is a cen- repository

tral place that holds the master copy of all versions of your

project’s files. Some version control systems use a database

as the repository, some use regular files, and some use a com-

bination of the two. Either way, the repository is clearly a piv-

otal component of your version control strategy. You need it

sitting on a safe, secure, and reliable machine. And it should

go without saying that it needs to get backed up regularly.

In the old days, the repository and all its users had to share

a machine (or at least share a filesystem). This turns out to

be fairly limiting; it was hard to have developers working at

THE REPOSITORY 8

Different Flavors of Networked Access

The writers of version control systems sometimes have
different definitions of what “networked” means. For
some, it means accessing the files in a repository over
shared network drives (such as Windows shares or NFS
mounts). For others it means having a client-server
architecture, where clients interact with server repos-
itories over a network. Both can work (although the
former is hard to design correctly if the underlying file-
sharing mechanism doesn’t support locking reliably).
However, you may find that deployment and security
issues dictate which systems you can use.

If a version control system needs access to shared
drives, and you need to access it from outside your
internal network, then you’ll need to make sure that
your organization allows you to access the data this
way. Virtual Private Network (VPN) packages allow
this kind of secure access, but not all companies run
VPNs.

CVS uses the client-server model for remote access.

different sites, or working on different kinds of machines or

operating systems. As a result, most version control systems

today support networked operation; as a developer you can

access the repository over a network, with the repository act-

ing as a server and the version control tools acting as clients.

This is tremendously enabling. It doesn’t matter where the

developers are; as long as they can connect over a network

to the repository, they can access all the project’s code and

its history. And they can do it securely; you can even use

the Internet to access your repository without sharing your

precious source code with a nosy competitor. Andy and I reg-

ularly access our source code over the Internet when we’re on

the road.

This does lead to an interesting question, though. What hap-

pens if you need to do development, but you don’t have a net-

work connection to your repository? The simple answer is, “it

depends.” Some version control systems are designed solely

Prepared exclusively for xxyyxxzzxx

WHAT SHOULD WE STORE? 9

for use while connected to the repository; it is assumed that

you’ll always be online, and that you won’t be able to change

source code without first contacting the central repository.

Other systems are more lenient. The CVS system, which we

use for our examples in this book, is one of the latter. We

can edit away on our laptops at 35,000 feet, and then resyn-

chronize the changes when we get to our hotel rooms. This

online/offline issue is a crucial one when choosing a version

control system; make sure that whatever product you choose

supports your style of working.

2.2 What Should We Store?

All the things in your project are stored in the repository. But

what exactly are the things we’re talking about?

Well, you obviously need program source files to build your

project: the Java, or C#, or VB, or whatever language you’re

using to write your application. In fact, some folks think that

this source code is such an important component of version

control that they use the term “Source Code Control Systems.”

The source code is certainly important, but many people make

the mistake of forgetting all the other things that need to be

stored under version control. For example, if you’re a Java

programmer, you may use the Ant tool to compile your source.

Ant uses a script, normally called build.xml, to control what

it does. This script is part of the build process; without it

you can’t build the application, so it should be stored in the

version control system.

Similarly, many projects use metadata to drive their config-

uration. This metadata should be in the repository too. So

should any scripts you use to create a release CD, test data

used by QA, and so on.

In fact, there’s an easy test when it comes to deciding what

goes in and what stays out. Simply ask yourself “if we didn’t

have an up to date version of x, could we build and deliver

our application?” If the answer is “no,” then x should be in

the repository.

Prepared exclusively for xxyyxxzzxx

WHAT SHOULD WE STORE? 10

Joe Asks. . .

What About Generated Artifacts?

If we store all the things needed to build the project,
does that mean that we should also be storing all the
generated files? For example, we might run JavaDoc
to generate the API documentation for our source
tree. Should that documentation be stored in the ver-
sion control system’s repository?

The simple answer is “no.” If a generated file can be
reconstituted from other files, then storing it is simply
duplication. Why is this duplication bad? It isn’t be-
cause we’re worried about wasting disk space. It’s
because we don’t want things to get out of step. If we
store the source and the documentation, and then
change the source, the documentation is now out-
dated. If we forget to update it and check it back
in, we’ve now got misleading documentation in our
repository. So in this case, we’d want to keep a single
source of the information, the source code. The same
rules apply to most generated artifacts.

Pragmatically, some artifacts are difficult to regener-
ate. For example, you may have only a single license
for a tool that generates a file needed by all the de-
velopers, or a particular artifact may take hours to
create. In these cases, it makes sense to store the
generated artifacts in the repository. The developer
with the tool’s license can create the file, or a fast ma-
chine somewhere can create the expensive artifact.
These can be checked in and all other developers
can then work from these generated files.

As well as all the files that go toward creating the released

software, you should also store all your non-code project arti-

facts under version control (anything that you’ll need to make

sense of things later on), including the project’s documenta-

tion (both internal and external). It might also include the

text of significant e-mails, minutes of meetings, information

you find on the web—anything that contributes to the project.

Prepared exclusively for xxyyxxzzxx

WORKSPACES AND MANIPULATING FILES 11

2.3 Workspaces and Manipulating Files

The repository stores all the files in our project, but that

doesn’t help us much if we need to add some magic new fea-

ture into our application; we need the files where we can get

to them. This place is called our local workspace. The work- workspace

space is a local copy of all of the things that we need from

the repository to work on our part of the project. For small

to medium-sized projects, the workspace will probably simply

be a copy of all the code and other artifacts in the project.

For larger projects, you may arrange things so that develop-

ers can work with just a subset of the project’s code, saving

them time when building, and helping to isolate subsystems

of the system. You might also hear the workspace called the

working directory or the working copy of the code.

In order to populate our workspace initially, we need to get

things out of the repository. Different version control systems

have different names for this process, but the most common

(and the one used by CVS) is checking out. When you check check out

out from the repository, you extract local copies of files into

your workspace.1 The check out process ensures that you get

up-to-date copies of the files you request, and that these files

are copied into a directory structure that mirrors that of the

repository.

As you work on a project, you’ll make changes to the project’s

code in your local workspace. Every now and then you’ll reach

a point where you’ll want to save your changes back to the

repository. This process is called committing; you’re commit- commit

ting your changes back into the repository.

Of course, all the time that you’re making changes, so are

other members of your team. They’ll also be committing their

changes to the repository. However, these changes do not af-

fect your local workspace; it doesn’t suddenly change just be-

cause someone else saved changes back into the repository.

Instead, you have to instruct the version control system to up-

date your local workspace. During the update, you’ll receive update

1Even if you do your work on the same computer that stores the repos-

itory, you’ll still need to check files out before using them; the repository

should be treated as a black box.

Prepared exclusively for xxyyxxzzxx

PROJECTS, MODULES, AND FILES 12

Network

Developer
One

Developer
Three

Developer
Two

check out

commit

updateCVS Repository

Figure 2.1: CLIENTS AND A REPOSITORY

the latest set of files from the repository. And when your col-

leagues do an update, they’ll receive your latest changes too.

(Just to confuse things, however, some folks also use the term

“check out” to refer to updating, as they are checking out the

latest changes. Because this is a common idiom, we’ll also

use this at times in this book.) These various interactions are

shown in Figure 2.1.

Of course there’s a potential problem here: what happens if

you and a colleague both want to make changes to the same

source file at the same time? It depends on the version control

system you’re using, but all have ways of dealing with the

situation. We talk about this more in the section on page 19

on locking options.

2.4 Projects, Modules, and Files

So far we’ve talked about storing things, but we haven’t talked

about how those things are organized.

At the lowest level, most version control systems deal with

individual files.2 Each file in your project is stored by name

2There are some IDE-like environments that perform versioning at the

method level, but they’re fairly uncommon.

Prepared exclusively for xxyyxxzzxx

WHERE DO VERSIONS COME IN? 13

in the repository; if you add a file called Panel.java to the

repository, then other members of your team can check out

Panel.java into their own workspaces.

However, that’s pretty low-level. A typical project might have

hundreds or thousands of files, and a typical company might

have dozens of projects. Fortunately, almost all version con-

trol systems allow you to structure the repository. At the top

level, they typically divide your work into projects. With each

project, they then let you work in terms of modules (and of-

ten submodules). For example, perhaps you are working on

Orinoco, a large web-based book ordering application. All the

files needed to build the application might be stored in the

repository under the Orinoco project name. If you wanted to,

you could check it all out onto your local disk.

The Orinoco project itself might be broken down into a num-

ber of largely independent modules. For example, there might

be a team working on credit card processing and another

working on order fulfillment. With any luck, the folks in

the credit card subproject won’t need to have all the project’s

source to do their job; their code should be nicely partitioned.

So when they check out, they really only want to see the parts

of the project that they’re working on.

CVS allows the repository administrator to divide a project

into modules. A module is a group of files (normally contained module

in one or more file system directory trees) that can be checked

out by name. Modules can be hierarchical, but they don’t

have to be; the same file or set of files can appear in many

different modules. Modules even let you share code between

projects (simply put the files to be shared into a module and

let the other team reference it by name).

Modules give you many different views into your repository,

allowing people in your teams to deal only with the things

they need. We talk about modules in Chapter 9 on page 107.

2.5 Where Do Versions Come In?

This book is all about version control systems, but so far all

we’ve talked about is storing and retrieving files in a reposi-

tory. Where do versions come in?

Prepared exclusively for xxyyxxzzxx

WHERE DO VERSIONS COME IN? 14

Behind the scenes, a version control system’s repository is a

fairly clever beast. It doesn’t just store the current copy of

each of the files in its care. Instead it stores every version

that has ever been checked in. If you check out a file, edit it, version

then check it back in, the repository will hold both the original

version and the version that contains your changes.3 Most

systems use a simple numbering system for the versions of a

file. In CVS, the first version of a file is assigned the revision

number 1.1. If a changed version is checked in, that change

is given the number 1.2. The next change gets 1.3, and so

on. (We’ll be talking about more complex numbering soon).

Associated with each of these revision numbers is the date

and time that the file was checked in, along with an optional

comment from the developer describing the change.

This system of storing revisions is remarkably powerful. Us-

ing it, the version control system can do things such as:

• Retrieve a specific revision of a file.

• Check out all of the source code of a system as it ap-

peared two months ago.

• Tell you what changed in a particular file between ver-

sions 1.3 and 1.5.

You can also use the revision system to undo mistakes. If you

get to the end of the week and discover you’ve been going down

a blind alley, you can back out all the changes you’ve made,

reverting back to the code as it was on Monday morning.

There’s a small wrinkle to the way revisions are numbered.

Some version control systems assign a single revision number

to all the files affected by a particular check in, while others

give each file a unique sequence of revision numbers. CVS

falls in to the latter camp. For example, we might check three

files out of a repository and get the following version numbers:

File1.java 1.10

File2.java 1.7

File3.java 1.9

3In reality, most version control systems store the differences between

versions of a file, rather than complete copies of each revision.

Prepared exclusively for xxyyxxzzxx

TAGS 15

We edit File1.java and File3.java, but leave File2.java

untouched. If we commit these changes back to the reposi-

tory, it will increment the revision numbers on those files we

changed:

File1.java 1.11

File2.java 1.7

File3.java 1.10

This means you can’t use the individual file version numbers

to keep track of things such as project releases (Version 1.3a

of the Orinoco project, for example). Because this one point

often causes grief in teams just starting to use CVS, let’s re-

peat it. The individual revision numbers that CVS assigns to

files should not be used as external version numbers. Instead,

version control systems provide you with tags (or their equiv-

alent).

2.6 Tags

All these revision numbers are great, but as people we seem to

be better at remembering names such as “PreRelease2” rather

than numbers like 1.47. We also have a problem when the dif-

ferent files that make up a particular release of our software

have different revision numbers. In the previous example, we

might be ready to ship the software built with File1.java,

File2.java, and File3.java, but each file has its own re-

vision number. So how do you tie all these different numbers

together?

Tags to the rescue. Version control systems let you assign tag

names to a group of files (or modules, or an entire project)

at a particular point in time. If you assigned the tag “Pre-

Release2” to this group of three files, you could subsequently

check them out using that same tag. You’d get revision 1.11 of

File1.java, 1.7 of File2.java, and 1.10 of File3.java.

Tags are a great way of keeping track of significant events in

the history of your project’s code. We’ll be using tags exten-

sively later in this document. In fact, tags and branches (the

topic of the next section) have their own chapter, starting on

page 87.

Prepared exclusively for xxyyxxzzxx

BRANCHES 16

update commit

update commit

Time

Mainline

Figure 2.2: A SIMPLE MAINLINE

2.7 Branches

In the normal course of development, most folks are working

on a common code base (although they’ll likely be working on

different parts of it). They’ll be checking stuff out, making re-

visions, and checking the changes back in, and everyone will

share this work. This river of code is often called a mainline. mainline

We show this in Figure 2.2. In this figure (and in the ones

that follow) time flows from left to right. The thicker horizon-

tal line represents the progression of code through time; it is

the mainline of the development. Individual developers check

in and check out code from this mainline into their individual

workspaces.

But consider the time when a new release is about to be

shipped. One small subteam of developers may be preparing

the software for that release, fixing last minute bugs, working

with the release engineers, and helping the QA team. During

this vital period, they need stability; it would set back their

efforts if other developers were also editing the code, adding

features intended for the next release.

One option is to freeze new development while the release is

being generated, but this means that the rest of the team is

effectively sitting idle.

Another option would be to copy the source software out onto

a spare machine and then have the release team just use this

machine. But if we do that, what happens to the changes

that they make after the copy? How do we keep track of

them? If they find bugs in the release code that are also in

the mainline, how can we efficiently and reliably merge these

Prepared exclusively for xxyyxxzzxx

BRANCHES 17

fixes back in? And once they’ve released the software, how do

we fix bugs that customers report; how can we guarantee to

find the source code in the same state as when we shipped

the release?

A far better option is to use the branching capabilities built

into version control systems.

Branching is a bit like the hackneyed device in science fiction branch

stories where some event causes time to split. From that point

forward there are two parallel futures. Some other event oc-

curs, and one of these futures splits too. Soon you’re dealing

with a whole bunch of alternative universes (a great device for

resolving the story when you run out of plot ideas).

Branching in a version control system also allows you to cre-

ate multiple parallel futures, but rather than being populated

by aliens and space cowboys, they contain source code and

version information.

Take the case of the team about to release a new version of the

product. So far, all the team has been working in the mainline,

the common thread of code shown in Figure 2.2 on the page

before. But the release subteam wants to isolate themselves

from this mainline. To do this, they create a branch in the

repository. From now until their work is done, the release

subteam will check out from and check in to this branch.

Even after the application is released, this branch will stay

active; if customers report bugs, the team will fix them in this

release branch. This situation is shown in Figure 2.3 on the

following page.

A branch is almost like having a totally separate repository:

people using that branch see the source code it contains and

operate independently of people working on other branches or

the mainline. Each branch has its own history and tracks re-

visions people make independently (although obviously if you

look back past the point where the branch was made you’ll

see that the branch and the mainline become one).

This is exactly what you want when you’re creating releases.

The team working on the release will have a stable code base

to polish up and ship. In the meantime, the main group of

developers can continue making changes to the main line of

Prepared exclusively for xxyyxxzzxx

MERGING 18

Create

release

branch

Prepare for

release

Continue

ongoing

development

Release Bug fixes

Figure 2.3: MAINLINE WITH A RELEASE BRANCH

code; there’s no need for a code freeze while the release takes

place. And when customers report problems in the release,

the team will have access to the code in the release branch

so they can fix the bugs and ship updated releases without

including any of the newly developed code in the mainline.

Branches are identified by tags, and file revision numbers

within a branch have extra levels in their numbers. So if

File1.java is at revision 1.14 and you create a branch, you’ll

find that in the branch it may have a revision number of

1.14.2.1, while in the mainline it’s still 1.14. Edit it in the

mainline and you’ll get revision 1.15; edit in the branch and

the revision number will be 1.14.2.2.

You can create branches off of other branches, but typically

you won’t want to; we’ve come across many developers who

have been put off branching for life because of some bad ex-

periences with overly complicated branching in a project. In

this book we’ll describe a simple scheme that does everything

you’ll need but that avoids unnecessary complexity.

2.8 Merging

Back to the science fiction story with the multiple alternate

futures. In order to spice up the plot, writers often allow their

characters to travel between these different universes using

wormholes, polyphase deconfabulating oscillotrons, or just a

good strong cup of piping hot tea.

Prepared exclusively for xxyyxxzzxx

LOCKING OPTIONS 19

You can also travel between alternate futures in a version con-

trol system (the cup of tea is optional). Although each checked

out version comes from a particular branch, and gets checked

back in to that branch, it’s easy to have multiple branches

checked out on a single developer’s machine (in different di-

rectories or folders on the hard drive, of course). That way a

developer can be working on both the mainline and on (say)

bug fixes in a release branch at the same time.

Even better, version control systems support merging. Say merge

you fix a bug in the release branch and realize that the same

bug will be present in the mainline code. You can tell the

version control system to work out the changes you made to

the source while you fixed the bug, and then to apply those

changes to the code in the mainline. This largely eliminates

the need to cut and paste changes back and forth between

different versions of a system. We’ll have a lot to say about

merging later on.

2.9 Locking Options

Imagine two developers, Fred and Wilma, working on the same

project. Each has checked out the project’s files onto their

respective local hard drives, and each wants to edit their lo-

cal copy of File1.java. What happens when they come to

check that file back in?

A bad scenario would be for the version control system to ac-

cept Fred’s changes, and then accept Wilma’s version of the

same file. As Wilma’s copy won’t have Fred’s changes in it,

storing Wilma’s copy in the repository will effectively forget all

Fred’s hard work.

To stop this happening, version control systems implement

some form of conflict resolution system (probably a good thing

in the case of Fred and Wilma). There are two common ver-

sions of conflict resolution.

The first is called strict locking. In a strict locking version con- strict locking

trol system, all files that are checked out are initially flagged

as being “read only.” You can look at them, and you can use

them to build your application, but you can’t edit or change

Prepared exclusively for xxyyxxzzxx

LOCKING OPTIONS 20

them. To do that, you have to ask the repository’s permis-

sion: “please can I edit File1.java?” If no one else is editing

that same file, then the repository gives you permission and

changes the permissions of your local copy of the file to be

“read/write.” You can then edit. If anyone else asks to edit

that same file while you have it flagged, they’ll be refused. Af-

ter you’ve finished your changes and checked the file back in,

your local copy reverts back to being read only, and it becomes

available for other folks to edit.

The second form of conflict resolution is often called optimistic

locking, although it really is no locking at all. Here, every de- optimistic

locking
veloper gets to edit any checked out file: the files are checked

out in a read/write state. However, the repository will not al-

low you to check in a file that has been updated in the repos-

itory since you last checked it out. Instead, it asks you to

update your local copy of the file to include the latest reposi-

tory changes before checking in. This is where the cleverness

lies. Instead of simply overwriting all your hard work with the

latest repository version of the file, the version control system

attempts to merge the repository changes with your changes.

For example, let’s look at File1.java:

Line 1 public class File1 {

- public String getName() {
- return "Wibble";

- }

5 public int getSize() {
- return 42;

- }

- }

Wilma and Fred both check this file out. Fred changes line 3:

return "WIBBLE";

He then checks the file back in. This means that Wilma’s copy

of the file is out of date. Not knowing this, Wilma changes line

6, so it returns 99 instead of 42. When she goes to check the

file in, she’s told that her copy is out of date; she needs to

merge in the repository changes. This corresponds to the star

marked CONFLICT in Figure 2.4 on the next page.

When Wilma merges the changes into her file, the version con-

trol system is clever enough to spot that Fred’s changes do not

overlap hers, so it simply updates her local copy with a new

Prepared exclusively for xxyyxxzzxx

LOCKING OPTIONS 21

public class File1 {
 public String getName() {
 return "Wibble";
 }
 public int getSize() {
 return 42;
 }
}

public class File1 {
 public String getName() {
 return "Wibble";
 }
 public int getSize() {
 return 42;
 }
}

public class File1 {
 public String getName() {
 return "Wibble";
 }
 public int getSize() {
 return 42;
 }
}

 . . .
 public String getName() {
 return "WIBBLE";
 . .

 . . .
 public int getSize() {
 return 99;
 . . .

public class File1 {
 public String getName() {
 return "WIBBLE";
 }
 public int getSize() {
 return 42;
 }
}

public class File1 {
 public String getName() {
 return "WIBBLE";
 }
 public int getSize() {
 return 99;
 }
}

public class File1 {
 public String getName() {
 return "WIBBLE";
 }
 public int getSize() {
 return 99;
 }
}

Fred Repository Wilma

check
out checkout

commit

edit
edit

commit

CONFLICT update &
 merge

commit

Figure 2.4: FRED AND WILMA MAKE CHANGES TO THE SAME

FILE, BUT THE CONFLICT IS HANDLED BY A MERGE.

Prepared exclusively for xxyyxxzzxx

LOCKING OPTIONS 22

line 3, leaving her changes still in her file. When she checks

in, she’ll be storing back her changes and leaving Fred’s in-

tact.

What happens if Fred and Wilma both updated line 3, but

made different changes to it? Assuming Fred checks in first,

his changes will be accepted. When Wilma goes to check in,

she’ll again be told that her copy is out of date. This time,

though, when she goes to merge in the repository version the

system will notice that she’s made a change to a line that has

also been changed in the repository. There’s a conflict. In this

case, Wilma will see some warning messages, and the conflict

will be marked up in her copy of the source file. She’ll have to

resolve it manually (probably by talking with Fred to find out

why they were both working on the same line of code).

Given this description you might think that optimistic locking

is a somewhat reckless way of developing systems; multiple

people editing the same files at the same time. Often peo-

ple who haven’t tried it reason that it can’t work, and insist

on working only with version control systems that implement

strict locking.

In reality, though, strict locking turns out to be a lot of extra

hassle with no particular payback. If you try an optimistic

locking system (such as CVS) you’ll be surprised at just how

rarely conflicts arise. It turns out that in practice the normal

ways of dividing up work on a team mean that people work

on different areas of the code; they don’t bump in to each

other that often. And when they do need to edit the same

file, they’re often working on different parts of it. In a strict

locking system, one would have to wait for the other to finish

and check in before proceeding. In an optimistic locking sys-

tem, both can proceed. We’ve tried both kinds of locking over

the years, and our strong recommendation is that the vast

majority of teams should use a version control system with

optimistic locking.

Prepared exclusively for xxyyxxzzxx

CONFIGURATION MANAGEMENT (CM) 23

2.10 Configuration Management (CM)

Sometimes you’ll hear folks talking about Configuration Man-

agement or Software Configuration Management systems (of-

ten abbreviated as CM or SCM). At first sight they seem to

be talking about version control. And that’s largely true; the

practices of CM rely very heavily on having good version con-

trol in place. But version control is just one tool used by

configuration management.

CM is a set of project management practices that enables you

to accurately and reproducibly deliver software. It uses ver-

sion control to achieve its technical goals, but also uses a lot

of human controls and cross checks to make sure that things

are not forgotten. You can think of configuration management

as a way of identifying the things that get delivered, and ver-

sion control as a means of recording that identification. CM

is a large (and to some extent ill-defined) topic, and we won’t

be covering it more in this book.

For now, though, let’s concentrate on how to use version con-

trol systems to get our jobs done. The next chapter is a gentle

introduction to a particular version control system, CVS.

Prepared exclusively for xxyyxxzzxx

