
Extracted from:

Rediscovering JavaScript
Master ES6, ES7, and ES8

This PDF file contains pages extracted from Rediscovering JavaScript, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Rediscovering JavaScript
Master ES6, ES7, and ES8

Venkat Subramaniam

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Copy Editor: Liz Welch
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-546-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Introduction
A few days before a corporate event, the company informed me that the
developers attending would be a mixture of Java, C#, and PHP programmers.
I was concerned that presenting examples in Java may frustrate C# and PHP
programmers. Picking any of the other two languages might have similar
consequences. I made an executive decision and used JavaScript for all my
examples—that way, I frustrated them all equally. Just kidding. It turned out
to be a good choice—JavaScript is truly one language used by programmers
who otherwise use different languages for most of their work.

JavaScript is the English of the programming world—it’s native to some people,
it’s arguably the most widely used language, and the language itself has
heavily borrowed from other languages, for greater good.

JavaScript is one of the most powerful, ubiquitous, and flexible languages. A
large number of programmers fear the language for many reasons. In the past
it had become infamous for being error prone and idiosyncratic. Thankfully,
through the newer versions, JavaScript has evolved into a respectable language;
it has come a long way since Douglas Crockford wrote JavaScript: The Good
Parts [Cro08].

Unlike other languages, JavaScript does not have the luxury to deprecate
features. Such a measure would be considered draconian—currently working
legacy code will suddenly fail on newer browsers. The language had to evolve
without breaking backward compatibility.

The changes in JavaScript comes in three flavors: alternatives, additions, and
advances.

Features that are error prone and outright confusing have alternative features
in the newer versions. For example, const and let are the new alternatives to
the messy var declarations. The rest operator, which makes it easier to create
self-documenting code, is a much better alternative to arguments, which lacks
clarity and needs explicit documentation. Also, the enhanced for loop removes
the burden of looping that is inherent in the traditional for loops. While the

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ves6
http://forums.pragprog.com/forums/ves6

old way of doing things still exists, we should make a conscious effort to learn
and use the newer alternatives.

When coming from other languages, programmers often say, “I wish JavaScript
had…” A lot of those wishes have come true. JavaScript has adapted features
found in languages like Java, C#, and Ruby, to mention a few. These additions
to the language not only make the language more pleasant to use but also
help solve a set of problems in a more elegant way than before.

In the vein of comparing with other languages, generators and infinite iterators
in JavaScript make it possible to create lazy sequences as in languages like
Haskell or Clojure. Arrow functions bring the power of lambda expressions
with consistent lexical scoping while making the code concise and expressive.
Template literals bring the feature of heredocs from languages like Ruby and
Groovy to JavaScript. And the enhanced class syntax makes programming in
JavaScript feel almost like any other object-oriented language…well, almost.

And what good is a language that does not allow you to create programs that
can in turn create programs? JavaScript makes it easy to turn those meta-
thoughts into useful programs using the advances in the area of metaprogram-
ming. The Proxy class, along with many capabilities of the language to create
dynamic, flexible, and asynchronous code, makes JavaScript a very exciting
language to program in. If you have enjoyed metaprogramming in languages
like Ruby, Python, and Groovy, JavaScript now has similar capabilities to
create highly flexible and extensible code.

The changes in recent years bring an entirely different feeling and vibe to the
language. It is a great time to be excited about programming in JavaScript.
Whether you are programming the front end or writing code for the server-
side back end, you can use the newer language features to make your code
elegant, concise, expressive, and above all less error prone.

There is no better way to learn the language than practicing. This book has
several examples for you to try out, as you learn about the new and exciting
features.

Fire up your favorite IDE or text editor—let’s get coding.

How to Run Modern JavaScript
JavaScript has evolved considerably but the runtime engines are still catching
up. Different browsers have varied support for different features from the
newer versions of JavaScript.

Introduction • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ves6
http://forums.pragprog.com/forums/ves6

Sites like kangax.github.io1 and caniuse.com2 can help you find whether a
particular browser supports a JavaScript feature you’re interested in using.
MDN3 web docs is a good source for documentation of JavaScript features and
support in a few different browsers. The good news is all browsers will be 100
percent features compatible within the next 20 years—or so it feels—but we
can’t wait that long.

If you are developing for the back end using JavaScript, you may have better
control of the version of the runtime engine you use. If you are developing for
the front end, you may not have much say about the browser and the version
of browser your users have. The version they use may not support a particular
feature, or it may be an old browser and may not support any of the features
of modern JavaScript. What gives?

Here are a few options to run JavaScript in general and, in particular, to
practice the examples and exercises in this book.

Run in Node.js
The easiest way to practice the code examples in this book is running them
in Node.js.4 Version 8.5 or later supports most of the latest features. I will
guide you along where necessary if you need to use a command-line experi-
mental option or an additional tool.

First, verify that Node.js is installed on your system. Point your browser to
https://nodejs.org and download the latest version if you don’t have it or have a
fairly old version. To avoid colliding with versions of Node.js already installed
on your system, use Node Version Manager5 (NVM) if it’s supported on your
operating system.

Once you install the latest version of Node.js, open a command prompt and type

node --version

The version of Node.js used to run the examples in this book is

v9.5.0

The version installed on your machine may be different. If it’s very old com-
pared to the version mentioned here, consider installing a more recent version.

1. https://kangax.github.io/compat-table/es6/
2. https://caniuse.com
3. https://developer.mozilla.org
4. https://nodejs.org
5. https://github.com/creationix/nvm

• Click HERE to purchase this book now. discuss

How to Run Modern JavaScript • vii

https://nodejs.org
https://kangax.github.io/compat-table/es6/
https://caniuse.com
https://developer.mozilla.org
https://nodejs.org
https://github.com/creationix/nvm
http://pragprog.com/titles/ves6
http://forums.pragprog.com/forums/ves6

If what you have is later than the version shown here, then continue using
the version you have.

To run the program in Node.js, issue the node command followed by the file-
name. For example, suppose we have a file named hello.js with the following
content:

introduction/hello.js
console.log('Hello Modern JavaScript');

Use the following command at the command prompt to run the code:

node hello.js

The command will produce the desired output:

Hello Modern JavaScript

Most IDEs that support JavaScript offer ways to more easily run the code from
within the IDE. Make sure that your IDE is configured to use an appropriate
version of Node.js.

Run Using the REPL
Even though I use text editors and IDEs to develop applications, I am a huge
fan of REPL, which stands for “read-eval-print-loop.” I call it the micro-proto-
typing environment. While in the middle of working on a function or imple-
menting enough code to make a unit test to pass, I often reach for the REPL
to quickly try out ideas. This is like how painters prime their brushes on the
side of the canvas while painting.

Let’s fire up the REPL and try out a snippet of code. The Node.js command
node, when executed without any filename, runs in the REPL mode.

At the command prompt type the command node and press Enter. In the node
prompt, which appears as >, type various JavaScript code snippets and press
Enter to run immediately. The output from the execution of the snippet is
shown instantly. To exit from the REPL, press Ctrl+C twice, press Ctrl+D, or
type .exit.

Let’s take the REPL for a ride. Here’s an interactive session for you to try:

node
> languages = ['Java', 'Python', 'Ruby', 'JavaScript']
['Java', 'Python', 'Ruby', 'JavaScript']
> word = 'Hello'
'Hello'
> word.st(hit tab)
word.startsWith word.strike

Introduction • viii

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ves6/code/introduction/hello.js
http://pragprog.com/titles/ves6
http://forums.pragprog.com/forums/ves6

> word.startsWith('H')
true
> languages.filter(language => language.startsWith('J'))
['Java', 'JavaScript']
>

In the REPL, create a list of languages and the REPL immediately evaluates
and prints the list. Now, suppose we want to pick only languages that start
with J. Hmm, does string support a startsWith() function? Why guess? We can
ask the REPL.

Create a variable named word and set it to the string 'Hello'. Then type word.st and
press the Tab key. The REPL lists all methods of string that start with st. Then
it repeats the command you had already typed. Type a after word.st and press
the Tab key again. The REPL now will complete the code with word.startsWith.
Proceed to complete that call and press Enter.

Finally, type the line with filter to pick words from the list that meet the expecta-
tion. The REPL immediately provides a feedback with the result of executing
the call.

REPL is also a great tool to use when you are on a colleague’s machine and
trying to show something quickly and realize he or she is not using your favorite
IDE. Instead of fiddling with his or her tool, you can open up the REPL and
show some quick examples on it.

Run in the Browser Console
Much like Node.js’s REPL, most browsers provide a developer console for
interactive experimentation. Here’s an example of using the console in Chrome,
which can be invoked by choosing View > Developer > JavaScript Console or
by pressing the appropriate keyboard shortcut key.

• Click HERE to purchase this book now. discuss

How to Run Modern JavaScript • ix

http://pragprog.com/titles/ves6
http://forums.pragprog.com/forums/ves6

Much like an IDE, the console pops up a list of possible methods when you
type a period and start typing the method. It provides an instant feedback
like the REPL as well.

Run within a Browser Using Babel
In many cases, developers don’t have control over the browser that their users
use. Very old browsers obviously don’t support any of the modern JavaScript
features. The support of newer features in newer browsers also varies widely.
Writing code using newer features, only to find that some browser a user is
running chokes up, is no fun, especially once the application is in production.
This is where transpilers come in—they translate the JavaScript you write to
the good old JavaScript supported by browsers old and new.

If you are developing for the front end, you’re most likely already using a
transpiler like Babel.6 Since most browsers support the older version of
JavaScript, you get the best of both worlds; you can write the code using the
features available in the newer versions of the language and let Babel compile
it to code that will run on most browsers. With this approach, you can make
use of the features without the worry of browser compatibilities, although
you still need to test and verify that things actually work.

Since most examples in this book run in Node.js, we don’t need to dive into
Babel at this time. We’ll revisit this topic toward the end of the book in Using
Decorators, on page ?, when we need Babel.

What’s in This Book?
The rest of this book is organized as follows.

Before we dig into the newer features of JavaScript, we’ll quickly visit some
old problem areas in Chapter 1, JavaScript Gotchas, on page ?. You’ll learn
about things to avoid and the safe alternatives to some nefarious features.

Chapter 2, Variables and Constants, on page ? will encourage you to replace
var with let or const and why you should prefer const where possible.

JavaScript has always had support for flexible parameters, but it was not intu-
itive and was also error prone. Chapter 3, Working with Function Arguments, on
page ? will show how the newer features of JavaScript make working with
parameters safe, expressive, and pleasant.

6. https://babeljs.io

Introduction • x

• Click HERE to purchase this book now. discuss

https://babeljs.io
http://pragprog.com/titles/ves6
http://forums.pragprog.com/forums/ves6

The enhanced for loop of modern JavaScript is the antidote for the boredom
of the common loops. We discuss different ways to loop, along with the gen-
erators and how to create infinite sequences, in Chapter 4, Iterators and
Symbols, on page ?.

The lexical scoping semantics of anonymous functions is inconsistent and
confusing, to say the least. Arrow functions don’t have majority of the problems
that are inherent in anonymous functions. But arrow functions come with
some limitations as well, as we’ll see in Chapter 5, Arrow Functions and
Functional Style, on page ?. In this chapter, we’ll also see how arrow functions
make it easy to create functional style code.

Hands down, one of the most exciting features of JavaScript is destructuring.
In Chapter 6, Literals and Destructuring, on page ? we’ll unleash the power
of destructuring along with features like template literals and enhanced object
literals.

JavaScript has supported classes for a long time, but without the class keyword.
Sadly, that created problems. The newer class-related syntax in JavaScript
makes writing object-oriented code much simpler, as we’ll see in Chapter 7,
Working with Classes, on page ?.

Unlike many other languages that support class-based inheritance, JavaScript
has prototypal inheritance. Even though this feature is highly powerful and
flexible, using it has been hard in the past—with the syntax confusing and
error prone. As we’ll see in Chapter 8, Using Inheritance, on page ?, it’s now
much easier, and safer, to use inheritance.

In Chapter 9, Using Modules, on page ?, you’ll learn to work with multiple
JavaScript files and the rules of module import and export.

Asynchronous programming is a way of life in JavaScript, and you need a
fairly good knowledge of how promises work to master that. Chapter 10,
Keeping Your Promises, on page ?, has you covered, I promise.

There’s something magical about metaprogramming—the ability to create
programs that can create programs. In Chapter 11, Exploring Metaprogram-
ming, on page ?, we’ll explore one type of metaprogramming—injection.

Then, in Chapter 12, Deep Dive into Metaprogramming, on page ?, we dig
into another type of metaprogramming—synthesis—and how to create highly
dynamic code.

• Click HERE to purchase this book now. discuss

What’s in This Book? • xi

http://pragprog.com/titles/ves6
http://forums.pragprog.com/forums/ves6

Appendix 1, Answers to Exercises, on page ? has solutions for exercises at
the end of each chapter, for you to compare notes with the solutions you
create.

Finally, for your convenience, the URLs that are scattered throughout this
book are gathered in one place in Appendix 2, Web Resources, on page ?.

Who Is This Book For?
This book is for programmers, full-stack developers, lead developers, software
architects, technical managers, or just about anyone who dives into code and
is interested in learning and applying modern JavaScript. If you feared
JavaScript or if the language annoyed you in the past, this book will show
how the language has beautifully evolved in ECMAScript 2015 (ES6), 2016
(ES7), and 2017 (ES8) and how it is now highly approachable. You can make
use of these features to program the front or the back end using JavaScript.

This book assumes the reader is familiar with basics of programming—it does
not teach the fundamentals of programming. Some prior knowledge of Java-
Script will be helpful. Programmers who are familiar with languages like Java,
C#, and Python but who are not familiar with JavaScript should be able to
pick up the concepts presented fairly quickly.

If you’re already familiar with the materials presented in this book, you may
use this book to help train your developers.

Online Resources
You can download all the example source code for the book from the Pragmatic
Bookshelf website for this book.7 You can also provide feedback by submitting
errata entries.

If you’re reading the book in PDF form, you can click the link above a code
listing to view or download the specific examples.

Thank you for reading this book.

7. https://www.pragprog.com/titles/ves6

Introduction • xii

• Click HERE to purchase this book now. discuss

https://www.pragprog.com/titles/ves6
http://pragprog.com/titles/ves6
http://forums.pragprog.com/forums/ves6

