
Extracted from:

Rediscovering JavaScript
Master ES6, ES7, and ES8

This PDF file contains pages extracted from Rediscovering JavaScript, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Rediscovering JavaScript
Master ES6, ES7, and ES8

Venkat Subramaniam

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Copy Editor: Liz Welch
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-546-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 3

Working with Function Arguments
Calling functions is arguably one of the most frequent tasks you’ll do when
programming. As an author of a function, you have to decide on the param-
eters to receive. As a caller of a function, you have to pass the right argu-
ments. And, from the extensibility and flexibility point of view, you may want
functions to receive variable numbers of arguments. From the beginning,
JavaScript is one of those few languages that has supported a variable
number of arguments. But that support was very spotty—the syntax was
unclear and inconsistent.

Modern JavaScript brings a breath of fresh air both for defining functions
and for calling functions.

Now, when defining functions you can clearly and unambiguously convey if
you intend to receive a few discrete parameters, or receive a variable number
of parameters, or a mixture of both. Unlike the old arguments, the new rest
parameter is a full-fledged Array object, and you can process the parameters
received with greater ease; you can even use functional style code for that.
And, if you choose to extend your function by adding new parameters, the
default parameters makes that transition much smoother than in the past.

When calling a function, the spread operator removes the need to manually
break down the values in an array into discrete parameters. That leads to
less code, less noise, and more fluency. In combination with Array, you may
also use the spread operator to combine values in arrays and discrete variables
to pass arguments to functions that receive rest parameters.

In this chapter we’ll quickly review the old arguments and how such a powerful
feature is mired with issues. Then we’ll see how the rest parameter replaces
arguments, bringing all the power forward minus the perils. We’ll then switch

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ves6
http://forums.pragprog.com/forums/ves6

to the function calling side and take a look at the benefits of the spread
operator. Finally we’ll examine default parameters and how they interplay
with rest parameters.

The Power and Perils of arguments
The ability to pass a variable number of arguments to a function is a feature
that’s esoteric in many languages but is commonplace in JavaScript. Java-
Script functions always take a variable number of arguments, even if we
define named parameters in function definitions. Here’s a max() function that
takes two named parameters:

parameters/max.js
const max = function(a, b) {

if (a > b) {
return a;

}

return b;
};

console.log(max(1, 3));
console.log(max(4, 2));
console.log(max(2, 7, 1));

We can invoke the function with two arguments, but what if we call it with
three arguments, for example? Most languages will scoff at this point, but
not JavaScript. Here’s the output:

3
4
7

It appears to even produce the right result when three parameters were
passed—what’s this sorcery?

First, we may pass as many arguments to a function as we like. If we pass
fewer arguments than the number of named parameters, the extra parameters
turn up as undefined. If we pass more arguments than the number of parame-
ters, then those are merely ignored. Thus the last argument 1 was ignored in
the last call to the max() method.

JavaScript has always allowed passing a variable number of arguments to
functions, but receiving a variable number of parameters has been messy
until recently. Traditionally, the special arguments keyword is used to process
the parameters, like so:

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ves6/code/parameters/max.js
http://pragprog.com/titles/ves6
http://forums.pragprog.com/forums/ves6

parameters/arguments.js
const max = function() {

console.log(arguments instanceof Array);

let large = arguments[0];

for(let i = 0; i < arguments.length; i++) {
if(arguments[i] > large) {
large = arguments[i];

}
}

return large;
};

console.log(max(2, 1, 7, 4));

This version of the max() function does not have any explicitly named param-
eters declared. Within the function we query if arguments is an Array and then
iterate over each element in that “thingy” to pick the largest value. The output
from the code is shown here:

false
7

While in the past arguments has been used extensively in JavaScript, there are
many issues with its use, as we see in this example:

• The method signature does not convey the intent—worse, it’s misleading.
While it appears that the function does not take any arguments, the
actions of the implementation are quite contrary to that.

• arguments is an Array wannabe—it may be used like an Array, but only on
the surface; it’s largely deficient in its capabilities.

• The code is noisy and can’t make use of more elegant solutions that may
be used if arguments were an Array.

arguments is beyond repair since JavaScript has to preserve backward compat-
ibility. The rest parameter solves the issues—moving forward, don’t use argu-
ments and use the rest parameter instead.

Using the Rest Parameter
A rest parameter is defined using the ellipsis (...) to signify that that parameter
is a placeholder for any number of arguments. The rest parameter directly
addresses the issues with arguments. First, it stands for the rest of the param-
eters and so is highly visible in the parameter list. Second, the rest parameter
is of Array type. Let’s convert the max() function from the previous example to
use a rest parameter.

• Click HERE to purchase this book now. discuss

Using the Rest Parameter • 7

http://media.pragprog.com/titles/ves6/code/parameters/arguments.js
http://pragprog.com/titles/ves6
http://forums.pragprog.com/forums/ves6

parameters/restmax.js
const max = function(...values) {

console.log(values instanceof Array);

let large = values[0];

for(let i = 0; i < values.length; i++) {
if(values[i] > large) {
large = values[i];

}
}

return large;
};

console.log(max(2, 1, 7, 4));

The two versions of max, the one that uses arguments and the one that uses a
rest parameter named values, look almost identical. First, instead of an empty
parameter list, we have ...values—the rest parameter name is prefixed with the
ellipsis. Second, anywhere arguments appeared in the code, now there is values.
At first sight, the rest parameter greatly improved the method signature and
left the rest of the function mostly unaltered, except for the variable name
change. Let’s look at the output of this code before discussing further:

true
7

The output shows that the rest parameter is an Array. This means we can use
better, more fluent, and expressive functions on the rest parameter than we
could ever use on arguments. For example, we can easily change the code to
the following functional style:

parameters/functionalrestmax.js
const max = function(...values) {

return values.reduce((large, e) => large > e ? large : e, values[0]);
};

You will learn about the functional style later in this book. For now, we can
appreciate how concise this code is, thanks to the fact that the rest parameter
is of Array type; we can’t call methods like reduce() directly on arguments.

JavaScript has some reasonable rules for the rest parameter:

• The rest parameter has to be the last formal parameter.
• There can be at most one rest parameter in a function’s parameter list.
• The rest parameter contains only values that have not been given an

explicit name.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ves6/code/parameters/restmax.js
http://media.pragprog.com/titles/ves6/code/parameters/functionalrestmax.js
http://pragprog.com/titles/ves6
http://forums.pragprog.com/forums/ves6

Overall the rest parameter is one of the good changes to the language. It
makes a very powerful feature of receiving a variable number of arguments
civil and sensible from both the syntax and the semantics point of view.

The ellipsis symbol used for the rest parameter on the receiving end can also
be used on the function call side; let’s explore that next.

• Click HERE to purchase this book now. discuss

Using the Rest Parameter • 9

http://pragprog.com/titles/ves6
http://forums.pragprog.com/forums/ves6

