Extracted from:

Clojure Applied

From Practice to Practitioner

This PDF file contains pages extracted from Clojure Applied, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF
copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Th
Pra ematic
ogrammers

Clojure
Applied

From Practice to Practitioner

Ben Vandgrift
Alex Miller

edited by Jacquelyn Carter

Clojure Applied

From Practice to Practitioner

Ben Vandgrift
Alex Miller

The Pragmatic Bookshelf

Dallas, Texas « Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (index)
Eileen Cohen (copyedit)

Dave Thomas (layout)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-074-5

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2015

https://pragprog.com
rights@pragprog.com

We've now laid a solid foundation—representing our domain, building aggre-
gate data, transforming data with functions, creating state, and using concur-
rency. It’s time to start building larger units of code that correspond to the
problem at hand. We'll call these larger units components. Separating our
code into components allows us to think at a higher level in pieces that cor-
respond to our problem. Component boundaries are also a good way to divide
a code base among multiple developers or teams. They can also be opportu-
nities for reuse.

Components are collections of finer-grained elements (functions, records,
protocols) that have a greater overall purpose. They have an external API that
callers will use. They also have an internal implementation, often including
component state, and can even use concurrency internally to process data
in parallel or to create a separate thread of processing to react to events.

We'll start our consideration of components by looking at how to organize the
functionality of our application into Clojure namespaces. This applies to all
our code, both inside and outside components. Next we’ll look at the external
API that callers will use. This requires considering both the function-call
interface and use of longer-lived core.async channels. Finally, we’ll look at
how to implement the component internals, managing component state and
its life cycle using the tools you've already seen for state and concurrency.

In Chapter 7, Compose Your Application, on page ? we’ll be taking these

components the next step to full application assembly.

Organizing with Namespaces

Clojure code is compiled and evaluated as a series of individual top-level
forms (functions, records, protocols, and so on), but Clojure provides
namespaces to group those individual forms. Namespaces are named, hierar-
chical containers that we can use to collect, organize, and name groups of
forms. One practical use of namespaces is to allow us to use simple names
in our code without worrying that we’ll conflict with the same name somewhere
else. The namespace provides a means of specifying which one we mean.

Although Clojure code is made up of finer-grained elements, dependencies
are declared and loaded at the namespace level, not at the function level. The
ns macro in each namespace defines its dependencies, collectively creating a
dependency graph. This dependency graph affects the order in which
namespaces are loaded. In cases where a namespace provides an implemen-
tation of a multimethod or protocol (both open systems for type-specific

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

°6

behavior), this load order can be important, because implementations must
be loaded before they can be used.

Both namespaces and components are tools for organization. Namespaces
are a language feature for organizing functions, whereas components are a
means of organizing at the problem level. These two approaches are both
useful and work in tandem to provide structure to our code, ultimately making
it easier for other developers to understand and use.

Namespace Categories

We group a set of functions into a namespace in Clojure for many reasons.
The following categories can be used to create a logical namespace architecture
that reflects the application:

Utility
Utility namespaces provide generic functions organized by domain or
purpose. For example, you might create a namespace for string manipu-
lation or parsing a particular file format. Generally, utility namespaces
have few dependencies.

Data definition
It’s common to define either a custom collection or a set of domain entities
in a namespace along with helper functions for using the collection or
entities.

Abstraction
Abstractions, like protocols, can be isolated in a namespace with minimal
dependencies.

Implementation
On the other side, it’s often useful to implement an abstraction defined
by a protocol or interface in a namespace. This implementation can then
be assembled into an application.

Assembly
Given a set of implementations and a configuration specifying how the
implementations should be constructed and connected, an assembly
namespace ties everything together. Inside the implementations, generally
only the abstractions (protocols) or data structures are used directly.

Entry point
Most applications have one or more entry points that connect the start
of the application (which includes the gathering of configuration) to initiate
assembly and other life-cycle operations.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

Organizing with Namespaces ¢ 7

The following diagram gives a view of how these kinds of namespaces typically
layer together in a library or application.

abstraction
2

abstraction
1

°<_
64_
64_

This structure is a useful guideline in designing your own namespace struc-
ture. The utility namespaces are at the bottom of the dependency graph, with
few or no dependencies of their own and in use by multiple namespaces above.
The next layer consists of either data or abstraction namespaces, creating
the building blocks for the application itself. Above the abstractions are the
implementations of those abstractions. Above those you’'ll find an assembly
layer where configuration is processed, implementations are assembled and
connected, and application state is created. At the top are one or more entry
points—web apps, command-line interfaces, services, and so on.

You can take many approaches to organizing the namespaces in a project as
a namespace tree, with no one right answer. Smaller projects often place the
majority of the namespaces within a single root named after the project, with
minimal nesting:

myproject.util.string ;; utility

myproject.util.json ;, utility

myproject.domain ;; data - domain entities
myproject.config ;; data - config data

myproject.services ;; abstraction - service definitions
myproject.impl.xyz ;; Implementation of service abstraction
myproject.assembly ;; assembly

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

°8

myproject.main ;; main entry point - command-line

For small systems, it’s often easiest to cut services horizontally, grouping
many abstractions, implementations, or utilities together. As your system
grows, it'll become increasingly useful to break your system into vertical slices,
where each particular component can consist of an API, an implementation,
a set of data definitions, and utilities.

Public vs. Private Functions

Clojure is biased toward making data and functions available by default.
However, most namespaces have functions that are used as helpers or never
intended to be part of the public usage. When you're defining the functions
in a namespace, consider how a consumer will perceive those functions and
is expected to use it. Some tools and conventions are private vars, documen-
tation strings, and the namespace structure itself.

The primary tool built into Clojure is the ability to mark functions as private
using defn- or the ":private meta tag:

(defn- internal-function [] ...)
(def ~:private internal-constant 42)

Although these vars will be omitted from some namespace function results,
they can still be accessed directly with the reader var syntax or by calling
directly into the namespace object.

Some documentation-generation tools, such as autodoc, will omit functions
that don’t have docstrings. Clojure core itself uses this feature to deemphasize
internal functions that are useful for advanced Clojure development but not
for general use.

Finally, it's common to see namespaces explicitly marked as being internal
by using a namespace like myproject.internal.db, where all namespaces under
internal are considered nonpublic.

You may find any or all of these techniques useful in indicating to users of
your own code where to start.

Now that you have some idea how to organize namespaces, we should use
those namespaces to create some components. We'll start by considering how
to design the API of components before moving inside to how the components
are implemented.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

Designing Component APIs ® 9

Designing Component APIs

When you identify a component within your application, you should begin
by thinking about the purpose it’ll serve and how it'll be used by other com-
ponents. Some typical kinds of components are information managers, proces-
sors, and facades. Information managers track state—either in-memory or
in an external data store—providing operations to create, modify, or query
that data. Processor components are all about data transformation or compu-
tation. Facade components exist primarily to make another external system
accessible (and pluggable).

In reality, most components don’t fit neatly into these boxes but instead
combine one or more aspects into a component that fulfills the unique needs
of your own application.

The first thing to consider when designing a component is the API that outside
consumers will use. We can interact with components in two primary ways:
invoking functions, and passing messages on a queue or channel. Let’s look
at functions first.

Manipulating Component Data with Functions

API functions are the knobs, buttons, or gauges on our component that allow
an external consumer to interact with it. In Clojure, a number of things can
be invoked as functions by a user but have different implementations—
functions, macros, protocols, and multimethods. (Others—maps, sets, key-
words, symbols, and so on—are less useful as part of an APIL.)

We've raised our focus to the component level, but you need to keep in mind
everything you've learned so far. Whenever possible, components should
expose immutable data directly. Due to immutability, there’s no harm in
handing back part of a component’s data to the consumer: no copies are
required, and the component’s own data cannot be affected. Once callers have
the data, they’re free to use all of the Clojure tools at their disposal in querying
or transforming it.

Consider a knowledge-engine component that manages a set of rules used
for taking a request and formulating an automated response. Set aside the
specific format of the rules for the moment, but assume that each rule is
defined as data. We need API functions to add, replace, and delete rules, and
a function to find rules based on some criteria. We also need some function
to fire the rules and do the job at hand:

;, Note: ke refers to the stateful knowledge engine component

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

°10

;; Read interface
(defn get-rules [kel)
(defn find-rules [ke criterial)

;, Update interface

(defn add-rule [ke rule])

(defn replace-rule [ke old-rule new-rulel)
(defn delete-rule [ke rule])

;, Processing interface
(defn fire-rules [ke request])

We could then use these functions as follows:

(defn example []
(let [ke (new-ke)l]

(add-rule ke :rl)
(add-rule ke :r2)
(add-rule ke :r3)
(replace-rule ke :rl :rlb)
(delete-rule ke :r3)
(get-rules ke)))

However, if we look a little deeper, we can see that a smaller set of functions
can support the entire API:

;; Get the rule-set
(defn get-rules [kel)

;; Transform from one rule-set to another
(defn transform-rules [ke update-fnl])

;; Produce a response from a request
(defn fire-rules [ke request])

The find-rules function can be implemented as a filter over get-rules. The add-rule,
replace-rule, and delete-rule functions can all be seen as an application of transform-
rules on the full rule set.

Most APIs have this pattern—a handful of key base functions and a larger
set of functions provided for ease of use. Protocols are a good way to capture
the core set of functions so that multiple implementations can extend that
protocol. The derived functions should be provided in the API namespace and
layered over the protocol. The API functions then work for any entity that
extends the protocol.

Putting this all together in a full namespace would look like this:

(ns components.ke)

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

Designing Component APIs ® 11

s, SPI protocol

(defprotocol KE
(get-rules [ke] "Get full rule set")
(transform-rules [ke update-fn]
"Apply transformation function to rule set. Return new KE.")
(fire-rules [ke request]
"Fire the rules against the request and return a response"))

;. private helper functions

(defn- transform-criteria [criteria]

)
;, api fns built over the protocol

(defn find-rules
[ke criteria]
(filter (transform-criteria criteria) (get-rules ke)))

(defn add-rule
[ke rulel]
(transform-rules ke #(conj % rule)))

(defn replace-rule
[ke old-rule new-rule]
(transform-rules ke #(-> % (disj old-rule) (conj new-rule))))

(defn delete-rule
[ke rule]
(transform-rules ke #(-> % (disj rule))))

This implementation defines a component API layered over a small extensible
abstraction (the service provider interface), as you can see in the figure.

components.ke
defprotocol KE dlefrecord KEImpl

get-rules I rules |

transform-rules oxtends get-rules
component — | |fire-rules transform-rules
users — fire-rules

transform-criteria

find-rules

add-rule

replace-rule

delete-rule

Creating a protocol for the entire API would require any implementation to
reimplement all of the functions. Instead, the best tool in Clojure for collecting

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

°12

a set of related functions is the namespace, not the protocol. Protocols are
best when we're defining a minimal abstraction for extension, as we do here.

We’'ll come back to the state-implementation parts of this component later
and continue focusing for now on other API considerations, such as asyn-
chronous calls.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

