
Extracted from:

Clojure Applied
From Practice to Practitioner

This PDF file contains pages extracted from Clojure Applied, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Clojure Applied
From Practice to Practitioner

Ben Vandgrift
Alex Miller

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (index)
Eileen Cohen (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-074-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2015

https://pragprog.com
rights@pragprog.com

Validating Entities
Once we have our domain model, we need a way to validate whether our data
conforms to it. Clojure’s dynamic types give us great power and flexibility but
also enforce fewer constraints by default. Data validation is an area in which
Clojure gives us choices about when, where, and how much validation we
want to provide. In areas where data is created by our code, we may want to
do little or no validation, whereas we may need significant validation when
accepting data from external sources.

A number of external libraries exist to provide data description and validation
support. We’ll focus on Prismatic’s Schema2 library, but you may also want
to look at core.typed,3 clj-schema,4 Strucjure,5 or seqex.6

The Prismatic Schema library describes type metadata as data, automates
descriptions, and validates data at runtime against that metadata. To add
the Schema library to a project, add the following dependency in Leiningen:

cljapplied/project.clj
[prismatic/schema "0.4.3"]

Let’s look at how to describe some data with Schema in the context of our
recipe-manager application. This time we’ll work out the details of the ingre-
dients in the recipe:

cljapplied/src/ch1/validate.clj
(defrecord Recipe

[name ;; string
description ;; string
ingredients ;; sequence of Ingredient
steps ;; sequence of string
servings ;; number of servings
])

(defrecord Ingredient
[name ;; string
quantity ;; amount
unit ;; keyword
])

2. https://github.com/prismatic/schema
3. https://github.com/clojure/core.typed
4. https://github.com/runa-dev/clj-schema
5. https://github.com/jamii/strucjure
6. https://github.com/jclaggett/seqex

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vmclojeco/code/cljapplied/project.clj
http://media.pragprog.com/titles/vmclojeco/code/cljapplied/src/ch1/validate.clj
https://github.com/prismatic/schema
https://github.com/clojure/core.typed
https://github.com/runa-dev/clj-schema
https://github.com/jamii/strucjure
https://github.com/jclaggett/seqex
http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

We’ve added comments to these records to help our colleagues (and maybe
ourselves a few months down the line) understand what we expect. A partic-
ular instance of a recipe might look like this:

cljapplied/src/ch1/validate.clj
(def spaghetti-tacos

(map->Recipe
{:name "Spaghetti tacos"
:description "It's spaghetti... in a taco."
:ingredients [(->Ingredient "Spaghetti" 1 :lb)

(->Ingredient "Spaghetti sauce" 16 :oz)
(->Ingredient "Taco shell" 12 :shell)]

:steps ["Cook spaghetti according to box."
"Heat spaghetti sauce until warm."
"Mix spaghetti and sauce."
"Put spaghetti in taco shells and serve."]

:servings 4}))

Let’s use Schema to describe our recipes instead. Schema has its own version
of defrecord that adds the ability to specify a schema for values of each field (in
addition to the normal effects of defrecord). Schema is specified after the :-,
which is a special keyword that Schema uses as a syntactic marker.

First, pull in the Schema namespace:

cljapplied/src/ch1/validate.clj
(ns ch1.validate

(:require [schema.core :as s])

Then, redefine the records using the Schema version of defrecord:

cljapplied/src/ch1/validate.clj
(s/defrecord Ingredient

[name :- s/Str
quantity :- s/Int
unit :- s/Keyword])

(s/defrecord Recipe
[name :- s/Str
description :- s/Str
ingredients :- [Ingredient]
steps :- [s/Str]
servings :- s/Int])

Normal type hints and class names (like String) are valid schema descriptions,
but we’ve used the built-in schemas like s/Str instead. These schemas are
portable and yield the proper check in both Clojure and ClojureScript. The
schema for ingredients is a sequence of items of type Ingredient. The steps field
is a sequence of strings.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vmclojeco/code/cljapplied/src/ch1/validate.clj
http://media.pragprog.com/titles/vmclojeco/code/cljapplied/src/ch1/validate.clj
http://media.pragprog.com/titles/vmclojeco/code/cljapplied/src/ch1/validate.clj
http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

Once we’ve annotated our record with schema information, we can ask for
an explanation of the schema, which is returned as data and printed:

user=> (require 'ch1.validate)
user=> (in-ns 'ch1.validate)
ch1.validate=> (pprint (schema.core/explain ch1.validate.Recipe))
(record
ch1.validate.Recipe
{:name java.lang.String,
:description java.lang.String,
:ingredients
[(record

ch1.validate.Ingredient
{:name java.lang.String, :quantity Int, :unit Keyword})],

:steps [java.lang.String],
:servings Int})

We can also validate our data against the schema:

ch1.validate=> (s/check Recipe spaghetti-tacos)
nil

If the data is valid, s/check returns nil. If the data is invalid, s/check returns a
descriptive error message detailing the schema mismatches. For example, if
we passed a recipe that omitted the description and had an invalid servings
value, we’d get an error message:

ch1.validate=> (s/check Recipe
(map->Recipe
{:name "Spaghetti tacos"
:ingredients [(->Ingredient "Spaghetti" 1 :lb)

(->Ingredient "Spaghetti sauce" 16 :oz)
(->Ingredient "Taco" 12 :taco)]

:steps ["Cook spaghetti according to box."
"Heat spaghetti sauce until warm."
"Mix spaghetti and sauce."
"Put spaghetti in tacos and serve."]

:servings "lots!"}))
{:servings (not (integer? "lots!")),
:description (not (instance? java.lang.String nil))}

The error message specifies the fields that didn’t conform to the schema and
why they failed. These checks can be a great help in detecting invalid data
passed into or between parts of your program for your domain data.

Schema also has a version of defn to specify schema shapes as input parame-
ters and return types. The types are used to create a helpful docstring:

ch1.validate=> (s/defn add-ingredients :- Recipe
[recipe :- Recipe & ingredients :- [Ingredient]]
(update-in recipe [:ingredients] into ingredients))

• Click HERE to purchase this book now. discuss

Validating Entities • 7

http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

ch1.validate=> (doc add-ingredients)

ch1.validate/add-ingredients
([recipe & ingredients])

Inputs: [recipe :- Recipe & ingredients :- [Ingredient]]
Returns: Recipe

Schema can also optionally verify the runtime inputs and report schema
mismatch errors by using the s/with-fn-validation function.

We’ve now looked at various trade-offs for representing domain entities, con-
necting entities together, and validating our entities. It’s time to consider how
we’ll implement behavior for our domain types.

Domain Operations
We often need to define a function for our domain that can be applied to many
different types of domain entities. This is particularly useful when domain
entities of different types are collected together in a composite data structure.

Object-oriented languages typically address this need via polymorphism.
Polymorphism is a means of abstraction, allowing a domain operation to be
decoupled from the types to which it can be applied. This makes your domain
implementation more general and provides a way to extend behavior without
modifying existing code.

Clojure provides two features that allow the creation of generic domain oper-
ations: multimethods and protocols. Choosing the specific function to invoke
for a generic operation is known as dispatch. Both protocols and multimethods
can dispatch based on argument type, but only multimethods can dispatch
based on argument value. We’ll start by looking at how type-based dispatch
compares in the two approaches and follow that with a look at value-based
dispatch and how to layer protocols.

Multimethods vs. Protocols
Consider our recipe-manager application and the need to calculate an esti-
mated grocery cost for each recipe. The cost of each recipe will be dependent
on adding up the costs of all the ingredients. We want to invoke the same
generic domain operation (“How much does it cost?”) on entities of two specific
types: Recipe and Ingredient.

To implement this domain operation with multimethods, we use two forms:
defmulti and defmethod. The defmulti form defines the name and signature of the
function as well as the dispatch function. Each defmethod form provides a

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

function implementation for a particular dispatch value. Invoking the multi-
method first invokes the dispatch function to produce a dispatch value, then
selects the best match for that value, and finally invokes that function
implementation.

We need to extend our recipe-manager domain slightly to add a Store domain
entity and a function that can look up the cost of an ingredient in a particular
grocery store. We can sketch these without fully implementing them:

cljapplied/src/ch1/multimethods.clj
(defrecord Store [,,,])

(defn cost-of [store ingredient] ,,,)

Now we can implement our cost multimethod for both Recipes and Ingredients:

cljapplied/src/ch1/multimethods.clj
(defmulti cost (fn [entity store] (class entity)))

(defmethod cost Recipe [recipe store]
(reduce +$ zero-dollars

(map #(cost % store) (:ingredients recipe))))

(defmethod cost Ingredient [ingredient store]
(cost-of store ingredient))

First the defmulti defines the dispatch function as (class entity), which produces
a dispatch value based on type. If we were using maps instead of records, we
would instead extract a type attribute with (:type entity) as the dispatch function.

Once the dispatch function is invoked with an entity to produce a type, that
type is matched with the available defmethod implementations, and the Recipe
or Ingredient function implementation is invoked.

Now consider how we might implement this same functionality with protocols.
Protocols are also defined in two steps. First, the defprotocol form declares the
name and a series of function signatures (but no function implementations).
Then, extend-protocol, extend-type, or extend is used to declare that a type extends
a protocol:

cljapplied/src/ch1/protocols.clj
(defprotocol Cost

(cost [entity store]))

(extend-protocol Cost
Recipe
(cost [recipe store]

(reduce +$ zero-dollars
(map #(cost % store) (:ingredients recipe))))

• Click HERE to purchase this book now. discuss

Domain Operations • 9

http://media.pragprog.com/titles/vmclojeco/code/cljapplied/src/ch1/multimethods.clj
http://media.pragprog.com/titles/vmclojeco/code/cljapplied/src/ch1/multimethods.clj
http://media.pragprog.com/titles/vmclojeco/code/cljapplied/src/ch1/protocols.clj
http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

Ingredient
(cost [ingredient store]

(cost-of store ingredient)))

Here we define the Cost protocol, which has a single function (although it could
have many). We then extend two types— Recipe and Ingredient—to the Cost pro-
tocol. These are both done in a single extend-protocol for convenience, but they
could be extended separately.

Let’s compare these two approaches to type-based dispatch. Protocols are
faster than multimethods for type dispatch because they leverage the under-
lying JVM runtime optimizations for this kind of dispatch (this is common in
Java). Protocols also have the ability to group related functions together in a
single protocol. For these reasons, protocols are usually preferred for type-
based dispatch.

However, whereas protocols only support type-based dispatch on the first
argument to the generic function, multimethods can provide value-based
dispatch based on any or all of the function’s arguments. Multimethods and
protocols both support matching based on the Java type hierarchy, but
multimethods can define and use custom value hierarchies and declare
preferences between implementations when there’s more than one matching
value.

Thus, protocols are the preferred choice for the narrow (but common) case of
type-based dispatch, and multimethods provide greater flexibility for a broad
range of other cases.

Next, let’s see an example of value-based dispatch with multimethods, which
isn’t covered by protocols.

Value-Based Dispatch
Although type-based dispatch is the most common case in many programs,
value-based dispatch is needed in plenty of cases—and that’s where multi-
methods have their time to shine.

Consider a new feature in our recipe-manager application: building a shopping
list by adding together all the ingredients in one or more recipes. Ingredients
are specified with a quantity and a unit. We might have some recipes that
specify spaghetti in pounds and some that specify it in ounces. We need a
system that can do unit conversion. Multimethods give us the ability to provide
conversions that depend on the source and target types:

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

cljapplied/src/ch1/convert.clj
(defmulti convert

"Convert quantity from unit1 to unit2, matching on [unit1 unit2]"
(fn [unit1 unit2 quantity] [unit1 unit2]))

;; lb to oz
(defmethod convert [:lb :oz] [_ _ lb] (* lb 16))

;; oz to lb
(defmethod convert [:oz :lb] [_ _ oz] (/ oz 16))

;; fallthrough
(defmethod convert :default [u1 u2 q]

(if (= u1 u2)
q
(assert false (str "Unknown unit conversion from " u1 " to " u2))))

(defn ingredient+
"Add two ingredients into a single ingredient, combining their
quantities with unit conversion if necessary."
[{q1 :quantity u1 :unit :as i1} {q2 :quantity u2 :unit}]
(assoc i1 :quantity (+ q1 (convert u2 u1 q2))))

The convert multimethod dispatches on the value of the source and target
types, not on their types. Adding new conversions is then a matter of supplying
a defmethod for every source/target unit pair we allow in the system.

We also provide a fallthrough case with :default—when the units are the same,
we can simply return the original quantity. If the units are different and we’ve
made it to :default, we’re attempting a conversion that wasn’t defined. Since
this is likely a programming error, we assert that it won’t happen. Missing
conversions then give us a useful error while we’re testing.

Here’s how this looks in practice:

user=> (ingredient+ (->Ingredient "Spaghetti" 1/2 :lb)
(->Ingredient "Spaghetti" 4 :oz))

#user.Ingredient{:name "Spaghetti", :quantity 3/4, :unit :lb}

Here we add 1/2 pound (8 ounces) with 4 ounces and get 3/4 pound (12
ounces).

If we add new units to the system, we’ll need to define conversions to and
from all other units they might be combined with. In a recipe-manager
application, the range of needed conversions is probably somewhat confined
based on typical recipe usage.

• Click HERE to purchase this book now. discuss

Domain Operations • 11

http://media.pragprog.com/titles/vmclojeco/code/cljapplied/src/ch1/convert.clj
http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

Extending Protocols to Protocols
Both multimethods and protocols are open systems. Participation of a type
or value in an abstraction can be specified (via defmethod or extend-protocol) sep-
arately from both the abstraction definition and the type. New participants
can be dynamically added during the life of the system.

One particular case that comes up with protocols is the need to decide, at
runtime, how particular concrete types should be handled in a protocol. This
need commonly arises when you’re creating protocols that layer over other
protocols.

For example, you might need to extend the recipe manager further to calculate
not only the cost of the items but also the cost of the items if bought from a
particular store, including the location-specific taxes. This can be captured
in a new protocol:

(defprotocol TaxedCost
(taxed-cost [entity store]))

We already have a protocol that can make this calculation on both items and
recipes of items. We’d like to layer the TaxedCost protocol over the existing Cost
protocol, but this isn’t allowed in Clojure:

(extend-protocol TaxedCost
Cost
(taxed-cost [entity store]

(* (cost entity store) (+ 1 (tax-rate store)))))
;;=> exception!

Clojure doesn’t allow protocols to extend protocols because it opens up
ambiguous and confusing cases for choosing the proper implementation
function. However, we can provide the same effect by detecting this case for
each concrete type encountered at runtime and dynamically installing the
adapted protocol for that type:

(extend-protocol TaxedCost
Object ;; default fallthrough
(taxed-cost [entity store]

(if (satisfies? Cost entity)
(do (extend-protocol TaxedCost

(class entity)
(taxed-cost [entity store]

(* (cost entity store) (+ 1 (tax-rate store)))))
(taxed-cost entity store))

(assert false (str "Unhandled entity: " entity)))))

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

If an entity’s type isn’t extended to the TaxedCost protocol but is extended to
the Cost protocol, we dynamically install an extension for the concrete type to
the TaxedCost protocol as well. Once it’s installed, we can then remake the same
call and it’ll now be rerouted to the just-installed implementation.

Note that this only happens on the first call with an unknown entity type.
Thereafter the protocol has an extension, and it’ll no longer route through
Object.

• Click HERE to purchase this book now. discuss

Domain Operations • 13

http://pragprog.com/titles/vmclojeco
http://forums.pragprog.com/forums/vmclojeco

