
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Representing data in code is a common task that has been a real chore in
Java. Whether you were creating an XML document in code, generating a
JSON response to a web request, or creating a nicely formatted customized
message as an automated response from your support system, the code often
was verbose, smelly, hard to read, and difficult to maintain. The coding
experience was rather unpleasant largely due to the inability to write multiple
lines of strings with ease and the endless escape sequences that had to be
placed in the strings. These were tasks any Java programmer dreaded…until
recently.

Some shells and programming languages offer heredocs as a feature to deal
with escapes but often have rough edges when dealing with indentations
and text termination. Programmers using heredocs often find it frustrating and
waste time due to idiosyncrasies of implementations. The designers behind
the evolution of Java took advantage of learning from the earlier solutions in
other platforms and languages. The result is a pleasant experience for the
Java programmers.

The text blocks feature was introduced in Java 13 and has evolved over a few
versions of the language. With text blocks, we can write multiple lines of text
with ease and don’t have to waste our time and effort with noisy escape
sequences. The text flows naturally, and the compiler is smart enough to
discern between the indentations in code and those in the text. The compiler
is also capable of recognizing and omitting unintended trailing spaces in text
and thus removes the need to strip them out from text placed in code. Overall,
the smartness of the implementation leads to better developer productivity.

In this chapter we’ll look at the problems that text blocks solve and at how
to make use of this feature to embed raw text, XML, and JSON data in code.
You’ll learn about the behavior of text blocks and the new escape sequences.
Along the way, we’ll also take a peek at the implementation of text blocks at
the bytecode level.

Let’s explore text blocks by starting with an example that suffers from verbosity,
and then we’ll refactor the code to make it expressive and elegant.

From Noisy to Nice
Suppose you’re working on an application for an online retailer and the task
on hand requires creating a message that will be emailed to users, asking for
their feedback by filling out a survey.

The message is expected to be of the following format right now but may
change in the future to add user and purchase-specific details:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vscajava
http://forums.pragprog.com/forums/vscajava

Thank you for your purchase. We hope you had a pleasant experience.

We request that you take a few minutes to provide your feedback.

Please fill out the survey at https://survey.example.com

If you have any questions or comments, please click on the "Support" link
at https://www.example.com.

In the older versions of Java, you may have to write code like the following to
create the message:

textblocks/vsca/CreateMessage.java
public static String createMessage() {

String message = "Thank you for your purchase.";
message += " We hope you had a pleasant experience.\n\n";
message += "We request that you take a few minutes ";
message += "to provide your feedback.\n\n";
message += "Please fill out the survey at https://survey.example.com\n\n";
message += "If you have any questions or comments, ";
message += "please click on the \"Support\" link\n";
message += "at https://www.example.com.\n";

return message;
}

The code uses += to append the text to the String instance. We could have
replaced message += with + to reduce some noise. The code uses combinations
of \n to provide line breaks and uses escape to include double quotes in the
text. Also, each line has to end with a semicolon, adding to the noise.

That’s one verbose code…shudder…one you’d hide for the sake of humanity,
definitely not one you would show to children. I bet that += isn’t a feature
you’d put on your resume either. We need better. Thankfully, Java has us
covered, starting from version 13.

You can refactor the noisy code with text blocks and make it nice and concise,
like so:

textblocks/vsca/CreateMessageConcise.java
public static String createMessage() {

var message = """
Thank you for your purchase. We hope you had a pleasant experience.

We request that you take a few minutes to provide your feedback.

Please fill out the survey at https://survey.example.com

If you have any questions or comments, please click on the "Support" link
at https://www.example.com.
""";

return message;
}

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vscajava/code/textblocks%2Fvsca%2FCreateMessage.java
http://media.pragprog.com/titles/vscajava/code/textblocks%2Fvsca%2FCreateMessageConcise.java
http://pragprog.com/titles/vscajava
http://forums.pragprog.com/forums/vscajava

The refactored version produces exactly the same output as the noisy version,
but the code is easier to read and doesn’t use +=. Also, there are no escapes
for double quotes and no smelly line breaks.

To create this code, you may literally copy the text from a requirements doc-
ument, paste it into code, and add the necessary syntax before and after to
define a text block. It’s a huge win to go from the requirements to code with
such little effort.

A text block starts with three double quotes """ followed by a line terminator—
they’re truly intended for multiline strings. A text block ends also with three
double quotes """, but that may appear on the same line as the ending text
or on a new line—see Smart Indentations, on page ?.

Before we dig further into text blocks, we should quickly take a look at how
they’re implemented at the bytecode level. Knowing this will help us to answer
questions that developers often ask about the effect of text blocks on perfor-
mance, serialization, and interoperability with other languages.

Text blocks are purely a Java compiler feature and don’t have any special
representation in the bytecode. Once the compiler processes the indentation
and escape characters, it creates a regular String. We can confirm this by
running the javap tool on the bytecode. Let’s take a look at the bytecode gen-
erated for the previous createMessage() method that uses a text block:

textblocks/shoutput/runCreateMessageConcise.sh.output
...

public static java.lang.String createMessage();
Code:

0: ldc #7 // String Thank
you for your purchase. We hope you had a pleasant
experience.\n\nWe request that you take a few minutes to
provide your feedback.\n\nPlease fill out the survey
at https://survey.example.com\n\nIf you have any
questions or comments, please click on the \"Support\"
link\nat https://www.example.com.\n
...

If we take a quick look at the details produced by the javap tool, we see that
the bytecode has instructions to load up a constant (ldc) value of a String. The
String contains the data created within the text block, with necessary escapes
added in for proper formatting.

There is no runtime impact to process text blocks; the compiler does the heavy
lifting. There are no serializability issues since the representation is the good
old String and it’s intended to provide the same performance benefits we’ve

• Click HERE to purchase this book now. discuss

From Noisy to Nice • 5

http://media.pragprog.com/titles/vscajava/code/textblocks%2Fshoutput%2FrunCreateMessageConcise.sh.output
http://pragprog.com/titles/vscajava
http://forums.pragprog.com/forums/vscajava

enjoyed all along. There is no interoperability issue either since at runtime
there is no concept of text blocks—it’s all merely Strings.

In addition to removing the need to concatenate texts using + or +=, Java
removes the need to use most escape characters when building a string. Let’s
take a look at that capability next.

Embedding Strings
To embed a double quote within a string we have to use escape characters.
This will result in bloated code that’s hard to maintain, especially when
working with code to generate XML or JSON documents. Text blocks remove
all that noise by letting us place single and double quotes freely within a
string. Let’s look at the benefit of this feature with an example.

Suppose we’re asked to create code to generate the following text:

The 'National Weather Service' has issued a "severe" thunderstorm warning
for tomorrow. Please """stock up""" on the essentials you'll need during
the adverse weather.

\Approved for general distribution\

To create this text using the common string, we may litter the code with
escape sequences, like so:

textblocks/vsca/Escapes.java
String message = "The \'National Weather Service\' has issued a " +

"\"severe\" thunderstorm warning\nfor tomorrow. " +
"Please \"\"\"stock up\"\"\" on the essentials you'll need " +
"during\nthe adverse weather.\n\n\\Approved for general distribution\\";

Good code should be inviting to the reader’s eyes. The noise of escapes will
likely dissuade even the most excited programmer eager to maintain the code.
It takes a lot of effort to change the code in these situations, and you can
forget about copying and pasting text directly from the requirements document
to code.

Thanks to text blocks, we can remove most of the noise from the previous
code.

var message = """
The 'National Weather Service' has issued a "severe" thunderstorm warning
for tomorrow. Please \"""stock up\""" on the essentials you'll need during
the adverse weather.

\\Approved for general distribution\\""";

Since three quotes are used as a delimiter for text blocks, in the rare occasion
when three double quotes appear continuously in the text, we’ll have to escape,

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vscajava/code/textblocks%2Fvsca%2FEscapes.java
http://pragprog.com/titles/vscajava
http://forums.pragprog.com/forums/vscajava

but with a single backslash. Also, since backslash is used as an escape char-
acter, we’ll have to escape that with another backslash if it appears in the
text.

As you can see, the multiline text block can handle raw strings with less
clutter, is effortless to read, easy to change, and is convenient to copy and
paste from other sources into code.

Multiline strings aren’t unique to Java; they exist in other languages. But
one of Java’s innovations is how it handles the indentation of the text. Let’s
dive into that next.

• Click HERE to purchase this book now. discuss

Embedding Strings • 7

http://pragprog.com/titles/vscajava
http://forums.pragprog.com/forums/vscajava

