P}‘hematic
Ograrnmers

Cruising Along
with Java

Modernize and Modularize
with the Latest Features

Venkat Subramaniam
Edited by Jacquelyn Carter

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.


https://www.pragprog.com

Java is evolving fast. There is a new release of the language every six
months. Ever since the introduction of the functional programming capa-
bilities in Java 8, countless new features have been added. This book walks
you through the most significant language changes after Java 8, from Java
9 through Java 24.

Java started out as an object-oriented programming language mixed with the
imperative style of programming. Then the functional programming capabilities
were added. Many developers have embraced the hybrid capabilities of the
language to write code using a combination of the imperative style, the func-
tional style, and the object-oriented paradigm.

Even though Java has pretty good OOP and functional programming support,
the folks behind the language haven’t been complacent. They've invested
enormous time and effort to keep the language contemporary. But they don’t
achieve that by adding a random set of features into the language based on
impulse, market pressure, or infatuation. They’ve been thorough in evaluating
and setting the direction for the language. When considering features to add,
they ask three significant questions:

e Is a feature useful for Java programmers creating enterprise and complex
applications?

e Is it feasible to implement a feature without significantly compromising
backward compatibility?

¢ Is it possible to implement a feature in a way that doesn’t hinder future
enhancements?

We see the results of those efforts in the steady improvements to the language
over the past few years.

Javals Agile

It’s truly refreshing to see agile development in action instead of just hearing
people talk about it. When the Java team announced the newer versions of
the language would be released every six months—in March and September
of each year—it was received with a huge amount of skepticism. Change is
hard in spite of how much better the results might be. But that release cycle
has been one of the most significant and bold decisions to which the team has
stayed committed and on track.

In the past, the team wanted to release a new version of Java every two years.
They would announce plans for what would be in the release. Developers of
the language would put their sincere and hard efforts behind those planned

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/vscajava
http://forums.pragprog.com/forums/vscajava

2

features. And, when the time came to release, it wasn’'t uncommon to hear
what each one of us had said many times to our managers: “we’re almost
done.” That “almost done” generally means “a few years later” in human
timeline terms. To finalize the plan before we know the details is waterfall-
like, which is how things were done before Java 9.

Agile development is feedback-driven development and, in essence, is guided
by adaptive planning.

That’s exactly what Java development is now.

Fast-Paced Change

Java is being released every six months, but Java is not being developed on
a six-months timeline. It's naive to think that most complex features that
have a huge impact on well over ten million developers and tens of thousands
of enterprises can be developed from start to finish in six months. One of the
biggest innovations behind Java is the realization that the timelines for differ-
ent features don’t have to be tied together into an arbitrary release.

There’s a release train departing every six months. A feature can get on any
release as soon as it’s ready. What's in a release isn’t set in stone. The plan
is flexible and based on reality. The details of the features are also not com-
mitted in one shot. The features are released in preview mode and then altered
based on feedback from the community at large.

The frequent release cycles benefit the team behind the language, the devel-
opers, and the companies who make use of Java.

The developers behind the Java language are able to innovate at a faster rate
thanks to the frequent release cycle. They're able to release in increments,
get feedback, make changes, see their work being actively used, and move
forward to build newer features. They say there’s nothing more motivating
than seeing their hard work benefiting the users right away.

For the users of the language, the enterprises, and the programmers building
their applications, the changes now come in bite-size. They're able to use
newer features much sooner rather than waiting to receive a large release
once every five or so years. It's easier and more efficient to learn and use one
feature every six months than six features every five years. Unlike in the past,
Java developers don't feel like they’re left behind on the language innovation
curve working with a stagnant language. They’re developing on a powerful
and at the same time vibrant platform.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/vscajava
http://forums.pragprog.com/forums/vscajava

Recent Changes to Java ¢ 3

Recent Changes to Java

Adaptive planning and feedback driven, that's what Java is today and it's
rocking. Here are the recent and exciting additions to the language—the fea-
tures you’ll learn about in this book—corresponding to the Java versions'
they were finalized in.

Modularization

Local variable type inference

Local variable syntax for lambda parameters
switch expression

Text blocks

Pattern matching for instance
Records

Sealed classes

Pattern matching for switch

Record patterns
Unnamed Variables and Patterns @ LTS Versions

Stream Gatherers

Java 8, 11, 17, and 21 are designated as Long Term Support (LTS)” releases.
Oracle provides premier support and periodic updates to customers who are
using an LTS version. The original plan was to designate a release every three
years as LTS, but that plan changed to making an LTS release every two years.
Even though not all the releases of Java are LTS releases, every single one of
the is developed and released with equal quality and attention to detail.

Most of the features you see in the previous figure were developed as part of
incubator projects, like Project Amber,” which were used to explore and
experiment with the design and implementation of ideas that were proposed
as part of the JDK Enhancement-Proposal & Roadmap Process (JEP). Once
a feature is introduced into Java, it goes through at least two rounds of preview

1. https://en.wikipedia.org/wiki/Java_version_history

2.  https://www.oracle.com/java/technologies/java-se-support-roadmap.html

3.  https://openjdk.org/projects/amber/

« Click HERE to purchase this book now. discuss


https://en.wikipedia.org/wiki/Java_version_history
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://openjdk.org/projects/amber/
http://pragprog.com/titles/vscajava
http://forums.pragprog.com/forums/vscajava

o4

before it’s accepted as an official part of the platform. This is an amazing
display of standardization after innovation.

Moving Ahead from an LTS

The ability to upgrade every six months is superb, but that doesn’t automat-
ically result in frequent and continuous upgrades for a vast number of com-
panies. Different organizations are at different stages of adoption of newer
versions of Java. The lag is often no fault of the developers but the result of
various constraints. For instance, the dependencies on third-party libraries
and frameworks sometimes place limitations on upgrading. Also, the environ-
ments where their applications are deployed may place some restrictions.
Some enterprises also place strict restrictions on upgrading past the versions
of Java that are designated as LTS so they can reliably receive security and
other updates periodically.

Depending on the company and the products that you're working on, you
may have experience with one of the LTS versions and may be eager to move
forward from it. This book was created for you, to take you from where you're
comfortable and most experienced to where you can tap into the full potential
of the language as your applications journey along the newer versions of Java.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/vscajava
http://forums.pragprog.com/forums/vscajava

