
Extracted from:

Programming DSLs in Kotlin
Design Expressive and Robust Special Purpose Code

This PDF file contains pages extracted from Programming DSLs in Kotlin, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming DSLs in Kotlin
Design Expressive and Robust Special Purpose Code

Venkat Subramaniam

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Copy Editor: L. Sakhi MacMillan
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-793-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

In natural languages, fluency refers to spoken or written words that effortlessly
and smoothly flow to convey the essence of a thought, concept, or an idea.
Like those “hums” in speech or noisy words like “basically” in writing, anything
that disrupts the flow hinders fluency. Likewise, a syntax is fluent if it’s
smooth, flows well, and has as little noise or extraneous details as possible.

Fluent code isn’t necessarily short or concise, but it doesn’t contain anything
superfluous. For example, this syntax is filled with noise:

fetch.balance(12345678);

Though we may be used to it, we should recognize that the dot, (), and ; are
there because a language may insist on it and not because they are essential.
In comparison to that noisy syntax, the following is more fluent:

fetch balance 12345678

Where possible, we should design code to facilitate that style.

When designing DSLs, aim for fluency, as it makes communication pleasant.
It reduces the drudgery and enhances the effectiveness of what’s being con-
veyed. Programmers used to C-like languages are sadly accustomed to the
ceremonies and noisy syntax, whereas programmers used to languages like
Ruby and Haskell often enjoy more fluency. Kotlin, being a multi-platform
language, offers nice flexibilities, with as little ceremony and noise as possible.
When designing our own DSLs, we can exploit that.

To design code with fluency, we have to aim for the fewest elements. The user
of a DSL shouldn’t be forced to write (), ;, dot, {}, classes, function declarations,
or variable definitions using val or var.

If host languages give us options to avoid syntax like new, ;, (), ->, and the like,
the specification feels a lot closer to a natural language than code. When
designing our own internal DSLs, we have to exploit the flexibilities of the
host languages to the fullest extent to achieve fluency.

As you’ll see, DSLs can enjoy fluency when hosted on top of Kotlin. Kotlin is
a language of low ceremony. For example, it doesn’t insist on having ; at the
end of each line. Functions that are marked infix can be called without a dot
and parentheses. By using overloaded operators, where it makes sense, we
can make the syntax of a DSL obvious.

In this chapter we’ll use a hypothetical banking application to look at some
ways to design syntax that are fluent, thanks to these capabilities of Kotlin.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vsdsl
http://forums.pragprog.com/forums/vsdsl

Remove Noisy Syntax
Users don’t like ceremony. Noisy syntax makes for a very unpleasant experi-
ence. Furthermore, users may be technical—engineers, data scientists, people
with advanced degrees—but unlike programmers, they’re mainly interested
in using the application and don’t care where to place a ;, dot, or (). When
designing a DSL, we should strive to remove as much noisy syntax as possible
from the eyes and hands of the users.

Suppose we’re designing fluent syntax for a DSL to be used in a banking
application by a domain expert. To query for the balance of an account, the
user may be asked to write something like this:

fluency/infix.kts
fetch.balance(12345678);

That may not bother a programmer who has endured the syntax of C-like
languages. However, we’ll receive no affection from our users if they have to
key in that syntax. At the very least, they may be tempted to spank us with
their little pinky that’s forced to type that ending ;. As designers of DSLs we
need to do better, to get rid of the ., (), and ;—all the noisy parts.

The DSL user should be able to type in just the essence, like so:

fluency/infix.kts
fetch balance 12345678

Achieving this level of fluency is incredibly easy and almost effortless in Kotlin.

First, Kotlin doesn’t care for ;, so just don’t tell the users about ; and we’re
good. Unless they are recovering programmers, users will never ask if they
need to place a ;.

Syntax like a + b is called infix notation, as opposed to prefix notation (+ a b),
which is the syntax of languages like Lisp and Clojure. Infix notation is intu-
itive and less noisy.

Dropping the . and () takes a little effort. Those two symbols can be dropped
if a function is marked with the infix accessor. Kotlin permits infix only on
functions that have a receiver (member functions or extension functions) and
take a single argument.

We can easily support the fluent DSL snippet syntax fetch balance..., by writing
a singleton fetch with a balance function marked with infix:

fluency/infix.kts
object fetch {

infix fun balance(number: Int) = println("Fetch the balance for $number")

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vsdsl/code/fluency/infix.kts
http://media.pragprog.com/titles/vsdsl/code/fluency/infix.kts
http://media.pragprog.com/titles/vsdsl/code/fluency/infix.kts
http://pragprog.com/titles/vsdsl
http://forums.pragprog.com/forums/vsdsl

}

We defined a singleton with a lowercase fetch instead of the conventional
Pascal-case Fetch in order to support the expected syntax. Instead of breaking
away from the convention, we may also use a type alias, as we’ll see later in
this chapter.

When designing DSLs, make extensive use of infix functions. Pause when
writing a function and ask if it should be marked with infix—in other words,
do you want the user to express the call to this function with little noise? The
answer is almost always yes.

Design for Fluency
Internal DSLs enjoy a love-hate relationship with their host language. On one
hand, the host language removes the burden of implementing a parser. On
the other hand, the syntax that may be used for the internal DSLs is limited
by the syntax permissible in the host language. This limitation can hinder
our ability to introduce fluency, and we’ll have to put extra effort into
designing around the limitations. Let’s look at some examples of such limita-
tions we’ll run into when we write DSLs in Kotlin, and devise some
workarounds.

• Click HERE to purchase this book now. discuss

Design for Fluency • 5

http://pragprog.com/titles/vsdsl
http://forums.pragprog.com/forums/vsdsl

