
Extracted from:

Functional Programming in Java,
Second Edition

Harness the Power of Streams and Lambda Expressions

This PDF file contains pages extracted from Functional Programming in Java,
Second Edition, published by the Pragmatic Bookshelf. For more information or

to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Functional Programming in Java,
Second Edition

Harness the Power of Streams and Lambda Expressions

Venkat Subramaniam

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

Sir Charles Antony Richard Hoare’s quote is used by permission of the ACM.
Abelson and Sussman’s quote is used under Creative Commons license.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-979-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To perseverance.

CHAPTER 6

Working with Resources
We make extensive use of resources when programming—we access files,
communicate to remote services, use database connections, and so on. And,
that often involves working with issues like the timely release of the resources,
locking for synchronization, and handling exceptions that may arise. Dealing
with all of these concerns at the same time can get daunting. In this chapter
we’ll see how we can structure our code, using lambda expressions, to alleviate
the pain of managing resource access in general—that is, to deal with the
mundane tasks that we’d better not get wrong.

We may have been led to believe that the JVM automates all garbage collection
(GC). It’s true that we could let the JVM handle it if we’re only using internal
resources. But GC is our responsibility if we use external resources, such as
when we connect to databases, open files and sockets, or use native resources.

Java provides a few options to properly clean up resources, but, as we’ll see
in this chapter, none are as effective as what we can do with lambda expres-
sions. We’ll use lambda expressions to implement the execute around method
(EAM) pattern, which gives us better control over the sequencing of operations.1

By using this pattern, as we’ll see, we move the burden of managing the
resource lifetime from the user of a piece of code to its developer who has
better knowledge and control over those details.

We’ll then take the ideas of managing resources further to streamline more
operations around the use of resources. We’ll see how to manage the critical
and error-prone task of managing locks in a safe way. Finally, we’ll look at
how these ideas can also help us with writing exception tests in a concise
and elegant way.

1. http://c2.com/cgi/wiki?ExecuteAroundMethod

• Click HERE to purchase this book now. discuss

http://c2.com/cgi/wiki?ExecuteAroundMethod
http://pragprog.com/titles/vsjava2e
http://forums.pragprog.com/forums/vsjava2e

Cleaning Up Resources
GC can be a pain to deal with. A company asked me to help debug a problem
—one programmer described the issue as “it works fine…most of the time.”
The application failed during peak usage. It turned out that the code was
relying on the finalize() method to release database connections. The JVM figured
it had enough memory and opted not to run GC. Since the finalizer was rarely
invoked, it led to external resource clogging and the resulting failure.

We need to manage situations like this in a better way, and lambda expres-
sions can help. Let’s start with an example problem that involves GC. We’ll
build the example using a few different approaches, discussing the merits
and deficiencies of each. This will help us see the strengths of the final solution
using lambda expressions.

Peeking into the Problem
We’re concerned with external resource cleanup, so let’s start with a simple
example class that uses a FileWriter to write some messages.

resources/fpij/FileWriterExample.java
public class FileWriterExample {

private final FileWriter writer;

public FileWriterExample(final String fileName) throws IOException {
writer = new FileWriter(fileName);

}
public void writeStuff(final String message) throws IOException {

writer.write(message);
}
public void finalize() throws IOException { //Deprecated in Java 9

writer.close();
}
//...

}

In the FileWriterExample class’s constructor, we initialize an instance of FileWriter,
giving it the name of a file to write to. In the writeStuff() method we write the
given message to the file using the instance of the FileWriter we created. Then,
in the finalize() method we clean up the resource, calling close() on it with the
hope that it will flush the content to the file and close it.

At first glance, the code seems reasonable. After all, classes written in many
Java applications use the finalize() method to clean up resources, a standard
practice until Java 8, and a lot of legacy code still uses that function. In
reality, expecting the resources to be cleaned up automatically is rather
wishful thinking.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterExample.java
http://pragprog.com/titles/vsjava2e
http://forums.pragprog.com/forums/vsjava2e

If the JVM finds that sufficient memory is available, then the GC won’t be
invoked and thus the finalize() method won’t be called for a long time. This will
result in the resource not being released in a timely manner and can also
lead to resource contention issues. This is one of the reasons why the finalize()
method was deprecated in Java 9, to encourage programmers to move away
from using that method. We’ll look at alternatives to the finalize() method
shortly, but first, let’s write a main() method to use the FileWriterExample class.

resources/fpij/FileWriterExample.java
public static void main(final String[] args) throws IOException {

final FileWriterExample writerExample =
new FileWriterExample("peekaboo.txt");

writerExample.writeStuff("peek-a-boo");
}

We created an instance of the FileWriterExample class and invoked the writeStuff()
method on it, but if we ran this code, we’d see that the peekaboo.txt file was
created but it’s empty. The finalizer never ran; the JVM decided it wasn’t
necessary as there was enough memory. As a result, the file was never closed,
and the content we wrote was not flushed from memory.

If we create several instances of the FileWriterExample class in a long-running
process, we’ll end up with several open files. Many of these files won’t be
closed in a timely manner since the JVM has a lot of memory and sees no
reason to run GC.

Let’s fix the problem by adding an explicit call to close(), and let’s get rid of the
finalize() method.

Say Farewell to finalize()
The finalize() method was deprecated in Java 9. Take a few minutes to examine your
own production code to see if the finalize() method is still present in any of the classes.
If you find them, note the occurrences down as technical debt and schedule time to
clean those up using the techniques you learn in this chapter.

Closing the Resource
Even though the object’s memory cleanup is still at the mercy of the JVM’s
GC, we could convince ourselves that the external resources used by an
instance may be quickly cleaned up with an explicit call. That, unfortunately,
will result in more issues. To see this, let’s write a close() method.

• Click HERE to purchase this book now. discuss

Cleaning Up Resources • 9

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterExample.java
http://pragprog.com/titles/vsjava2e
http://forums.pragprog.com/forums/vsjava2e

resources/fpij/FileWriterExample.java
public void close() throws IOException { //Not a good solution

writer.close();
}

In the close() method, in turn, we call the FileWriter instance’s close() method. If
we used any other external resources in the FileWriterExample, we can clean them
up here, as well. Let’s make explicit use of this method in the main() method.

resources/fpij/FileWriterExample.java
final FileWriterExample writerExample =

new FileWriterExample("peekaboo.txt");

writerExample.writeStuff("peek-a-boo");
writerExample.close();

If we run the code now and look into the peekaboo.txt file, we’ll see the peek-a-
boo message. The code works, but it’s far from perfect.

The explicit call to close() cleans up any external resources the instance uses
as soon as we indicate the instance is no longer needed. But we may not
reach the call to the close() method if there was an exception in the code
leading up to it. We’ll have to do a bit more work to ensure the call to close()
happens. Let’s take care of that next.

Ensuring Cleanup
We need to ensure the call to close() happens whether or not there’s an
exception. To achieve this, we can wrap the call in a finally block.

resources/fpij/FileWriterExample.java
final FileWriterExample writerExample =

new FileWriterExample("peekaboo.txt");

try { //Rather verbose
writerExample.writeStuff("peek-a-boo");

} finally {
writerExample.close();

}

This version will ensure resource cleanup even if an exception occurs in the
code, but that’s a lot of effort and the code is verbose and smelly. Java 7
introduced a feature to reduce such smells, as we’ll see next.

Using ARM
The automatic resource management (ARM) is a feature that has been available
since Java 7 and is useful for automatically releasing a resource at the end
of its usage. When used properly, ARM can reduce verbosity in code. Rather

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterExample.java
http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterExample.java
http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterExample.java
http://pragprog.com/titles/vsjava2e
http://forums.pragprog.com/forums/vsjava2e

than using both the try and finally blocks that we used in the previous example,
we can use the ARM feature with a special form of the try block with a resource
attached to it. When this syntax is used, the Java compiler takes care of
automatically inserting, in the bytecode, the finally block and a call to the close()
method.

Let’s see how the code would look with ARM; we’ll use an instance of a new
FileWriterARM class.

resources/fpij/FileWriterARM.java
try(final FileWriterARM writerARM = new FileWriterARM("peekaboo.txt")) {

writerARM.writeStuff("peek-a-boo");

System.out.println("done with the resource...");
}

We created the instance of the class FileWriterARM within the safe haven of the
try-with-resources form and invoked the writeStuff() method within its block.
When we leave the scope of the try block, the close() method is automatically
called on the instance/resource managed by this try block. For this to work,
the compiler requires the managed resource class to implement the AutoCloseable
interface, which has just one method, close().

The rules around AutoCloseable have gone through a few changes in Java. First,
Stream implements AutoCloseable and, as a result, all input/output (I/O)-backed
streams can be used with try-with-resources. The contract of AutoCloseable has
been modified from a strict “the resource must be closed” to a more relaxed
“the resource can be closed.” If we’re certain that our code uses an I/O
resource, then we should use try-with-resources.

Here’s the FileWriterARM class used in the previous code.

resources/fpij/FileWriterARM.java
public class FileWriterARM implements AutoCloseable {

private final FileWriter writer;

public FileWriterARM(final String fileName) throws IOException {
writer = new FileWriter(fileName);

}

public void writeStuff(final String message) throws IOException {
writer.write(message);

}

public void close() throws IOException {
System.out.println("close called automatically...");
writer.close();

}

//...
}

• Click HERE to purchase this book now. discuss

Cleaning Up Resources • 11

http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterARM.java
http://media.pragprog.com/titles/vsjava2e/code/resources/fpij/FileWriterARM.java
http://pragprog.com/titles/vsjava2e
http://forums.pragprog.com/forums/vsjava2e

Let’s run the code and look at the peekaboo.txt file and the console for the code’s
output.

done with the resource...
close called automatically...

We can see the close() method was called as soon as we left the try block. The
instance we created when entering the try block isn’t accessible beyond the
point of leaving the block. The memory that instance uses will be garbage-
collected eventually based on the GC strategy the JVM employs.

The previous code using ARM is concise and charming, but the programmers
have to remember to use it. The code won’t complain if we ignore this elegant
construct; it will simply create an instance and call methods like writeStuff()
outside of any try blocks. If we’re looking for a way to ensure timely cleanup
and avoid programmer errors, we have to look beyond ARM, as we’ll do next.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vsjava2e
http://forums.pragprog.com/forums/vsjava2e

