
Extracted from:

Functional Programming in Java
Harnessing the Power of Java 8 Lambda Expressions

This PDF file contains pages extracted from Functional Programming in Java,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com




Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Sir Charles Antony Richard Hoare’s quote is used by permission of the ACM.
Abelson and Sussman’s quote is used under Creative Commons license.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-46-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2014

http://pragprog.com
rights@pragprog.com


To the loving memory of my grandmothers,
Kuppammal and Jayalakshmi. I cherish my

wonder years under your care.



CHAPTER 1

There are two ways of constructing a software design: One way is to
make it so simple that there are obviously no deficiencies, and the
other way is to make it so complicated that there are no obvious
deficiencies. The first method is far more difficult.1

  ➤ Sir Charles Antony Richard Hoare

Hello, Lambda Expressions!
Our Java coding style is ready for a remarkable makeover.

The everyday tasks we perform just got simpler, easier, and more expressive.
The new way of programming in Java has been around for decades in other
languages. With these facilities in Java we can write concise, elegant, and
expressive code with fewer errors. We can use this to easily enforce policies
and implement common design patterns with fewer lines of code.

In this book we’ll explore the functional style of programming using direct
examples of everyday tasks we do as programmers. Before we take the leap
to this elegant style, and this new way to design and program, let’s discuss
why it’s better.

Change the Way You Think
Imperative style—that’s what Java has provided us since its inception. In this
style, we tell Java every step of what we want it to do and then we watch it
faithfully exercise those steps. That’s worked fine, but it’s a bit low level. The
code tends to get verbose, and we often wish the language were a tad more
intelligent; we could then tell it—declaratively—what we want rather than
delve into how to do it. Thankfully, Java can now help us do that. Let’s look
at a few examples to see the benefits and the differences in style.

The Habitual Way
Let’s start on familiar ground to see the two paradigms in action. Here’s an
imperative way to find if Chicago is in a collection of given cities—remember, the

1. Hoare, Charles Antony Richard, "The Emperor’s Old Clothes," Communications of the
ACM 24, no. 2 (February 1981): 5–83, doi:10.1145/358549.358561.

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/vsjava8
http://forums.pragprog.com/forums/vsjava8


listings in this book only have snippets of code (see How to Read the Code
Examples, on page ?).

introduction/fpij/Cities.java
boolean found = false;
for(String city : cities) {

if(city.equals("Chicago")) {
found = true;
break;

}
}

System.out.println("Found chicago?:" + found);

This imperative version is noisy and low level; it has several moving parts.
We first initialize a smelly boolean flag named found and then walk through each
element in the collection. If we found the city we’re looking for, then we set
the flag and break out of the loop. Finally we print out the result of our finding.

A Better Way
As observant Java programmers, the minute we set our eyes on this code
we’d quickly turn it into something more concise and easier to read, like this:

introduction/fpij/Cities.java
System.out.println("Found chicago?:" + cities.contains("Chicago"));

That’s one example of declarative style—the contains() method helped us get
directly to our business.

Tangible Improvements
That change improved our code in quite a few ways:

• No messing around with mutable variables
• Iteration steps wrapped under the hood
• Less clutter
• Better clarity; retains our focus
• Less impedance; code closely trails the business intent
• Less error prone
• Easier to understand and maintain

Beyond Simple Cases
That was simple—the declarative function to check if an element is present
in a collection has been around in Java for a very long time. Now imagine not
having to write imperative code for more advanced operations, like parsing

• 2

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/vsjava8/code/introduction/fpij/Cities.java
http://media.pragprog.com/titles/vsjava8/code/introduction/fpij/Cities.java
http://pragprog.com/titles/vsjava8
http://forums.pragprog.com/forums/vsjava8


files, working with databases, making calls to web services, programming
concurrency, and so on. Java now makes it possible to write concise, elegant,
less error-prone code, not just for simple cases, but throughout our
applications.

The Old Way
Let’s look at another example. We’ll define a collection of prices and try out
a few ways to total discounted price values.

final List<BigDecimal> prices = Arrays.asList(
new BigDecimal("10"), new BigDecimal("30"), new BigDecimal("17"),
new BigDecimal("20"), new BigDecimal("15"), new BigDecimal("18"),
new BigDecimal("45"), new BigDecimal("12"));

Suppose we’re asked to total the prices greater than $20, discounted by 10%.
Let’s do that in the habitual Java way first.

introduction/fpij/DiscountImperative.java
BigDecimal totalOfDiscountedPrices = BigDecimal.ZERO;

for(BigDecimal price : prices) {
if(price.compareTo(BigDecimal.valueOf(20)) > 0)

totalOfDiscountedPrices =
totalOfDiscountedPrices.add(price.multiply(BigDecimal.valueOf(0.9)));

}
System.out.println("Total of discounted prices: " + totalOfDiscountedPrices);

That’s familiar code; we start with a mutable variable to hold the total of the
discounted prices. We then loop through the prices, pick each price greater
than $20, compute each item’s discounted value, and add those to the total.
Finally we print the total value of the discounted prices.

And here’s the output from the code.

Total of discounted prices: 67.5

It worked, but writing it feels dirty. It’s no fault of ours; we had to use what
was available. But the code is fairly low level—it suffers from “primitive
obsession” and defies the single-responsibility principle. Those of us working
from home have to keep this code away from the eyes of kids aspiring to be
programmers, for they may be dismayed and sigh, “That’s what you do for a
living?”

A Better Way, Again
Now we can do better—a lot better. Our code can resemble the requirement
specification. This will help reduce the gap between the business needs and

• Click  HERE  to purchase this book now.  discuss

Change the Way You Think • 3

http://media.pragprog.com/titles/vsjava8/code/introduction/fpij/DiscountImperative.java
http://pragprog.com/titles/vsjava8
http://forums.pragprog.com/forums/vsjava8


the code that implements it, further reducing the chances of the requirements
being misinterpreted.

Rather than tell Java to create a mutable variable and then to repeatedly
assign to it, let’s talk with it at a higher level of abstraction, as in the next
code.

introduction/fpij/DiscountFunctional.java
final BigDecimal totalOfDiscountedPrices =

prices.stream()
.filter(price -> price.compareTo(BigDecimal.valueOf(20)) > 0)
.map(price -> price.multiply(BigDecimal.valueOf(0.9)))
.reduce(BigDecimal.ZERO, BigDecimal::add);

System.out.println("Total of discounted prices: " + totalOfDiscountedPrices);

Let’s read that aloud—filter prices greater than $20, map the prices to dis-
counted values, and then add them up. The code flows along with logic in the
same way we’d describe the requirements. As a convention in Java, we wrap
long lines of code and line up the dots before the method names, as in the
previous example.

The code is concise, but we’re using quite a number of new things from Java
8. First, we invoked a stream() method on the prices list. This opens the door to
a special iterator with a wealth of convenience functions, which we’ll discuss
later.

Instead of explicitly iterating through the prices list, we’re using a few special
methods, such as filter() and map(). Unlike the methods we’re used to in Java
and the Java Development Kit (JDK), these methods take an anonymous
function—a lambda expression—as a parameter, within the parentheses ().
(We’ll soon explore this further.) We invoke the reduce() method to compute
the total on the result of the map() method.

The looping is concealed much like it was under the contains() method. The
map() method (and the filter() method), however, is more sophisticated. For each
price in the prices list, it invokes the provided lambda expression and puts the
responses from these calls into a new collection. The reduce() method is invoked
on this collection to get the final result.

Here’s the output from this version of code:

Total of discounted prices: 67.5

The Improvements
This is quite an improvement from the habitual way:

• 4

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/vsjava8/code/introduction/fpij/DiscountFunctional.java
http://pragprog.com/titles/vsjava8
http://forums.pragprog.com/forums/vsjava8


• Nicely composed, not cluttered
• Free of low-level operations
• Easier to enhance or change the logic
• Iteration controlled by a library of methods
• Efficient; lazy evaluation of loops
• Easier to parallelize where desired

Later we’ll discuss how Java provides these improvements.

Lambdas to the Rescue
Lambdas are the functional key to free us from the hassles of imperative
programming. By changing the way we program, with a feature now baked
into Java, we can write code that’s not only elegant and concise, but also less
prone to errors; more efficient; and easier to optimize, enhance, and parallelize.

• Click  HERE  to purchase this book now.  discuss

Change the Way You Think • 5

http://pragprog.com/titles/vsjava8
http://forums.pragprog.com/forums/vsjava8



