
Extracted from:

Test-Driving JavaScript Applications
Rapid, Confident, Maintainable Code

This PDF file contains pages extracted from Test-Driving JavaScript Applications,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Test-Driving JavaScript Applications
Rapid, Confident, Maintainable Code

Venkat Subramaniam

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (index)
Liz Welch (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-174-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 3

Test Asynchrony
JavaScript libraries are filled with async functions. For example, to read a
file, give the filename to the fs library and it’ll get back later with data or an
error. Likewise, talking to services involves async functions—we can’t escape
asynchrony. Let’s embrace asynchrony with automated tests.

Writing and executing automated tests for asynchronous functions poses
some challenges. A call to a synchronous function blocks and waits for the
result. However, a call to an asynchronous function is nonblocking and the
result or error will arrive later through callbacks or promises. To write auto-
mated verifications for async functions, you need to go beyond the techniques
you learned in the previous chapter.

Let’s focus now on testing asynchronous functions and temporarily set aside
our desires for test-first design. Doing so will help us to more easily explore
the nitty-gritty details of writing tests for asynchronous functions. We will
write tests that run within Node.js and tests that run within browsers. To
meet this goal, we’ll start with pre-created asynchronous functions. The
techniques you learn here will help you in the later chapters when we take
on the test-first approach.

To verify async functions, you have to deal with two issues. Since results may
not arrive immediately after you make the calls, you’ll have to make the tests
wait for the results to show up in the callbacks or through promises. Also,
you have to decide how long to wait for the results—the timeout. Set the
timeout too low, tests fail prematurely. Set it too long, and you’ll wait longer
than necessary if a function were to become nonresponsive. These efforts may
seem overwhelming, but tools and techniques are available to effectively deal
with these challenges.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vsjavas
http://forums.pragprog.com/forums/vsjavas

We’ll first explore testing functions that use callbacks; then we’ll dig into
promises. Let’s get started.

Server-Side Callbacks
A caller of a synchronous function blocks until it gets the result or the
intended action is completed. But calls to asynchronous functions are non-
blocking. A caller of such functions typically sends one or more callback
functions as extra parameters and moves on. Asynchronous functions that
use callbacks eventually invoke one or more callbacks when the processing
is completed. It’s through these callbacks that they indirectly send a response
back to the caller. The difference in the nature of the functions poses some
challenges from the point of view of testing.

Due to the nature of the call, a test for a synchronous function automatically
waits for the result to arrive. The test for an asynchronous function needs to
induce a wait since the call is nonblocking. Introducing a sleep or delay in
execution will not suffice. For one, it will make tests run slower. Furthermore,
there is no guarantee the asynchronous function has responded within the
duration of delay. Rather, we need a reliable mechanism to test these func-
tions. Let’s explore this with an example.

The function we’ll test reads a given file and returns the number of lines in
it. It currently has no tests—we’ll write the tests for it together.

We’ll first write a test naively for the asynchronous function, like we did for
the synchronous functions. You’ll learn from that experience the reasons why
asynchronous testing needs to be different. Then we’ll write a proper asyn-
chronous test and make it pass. Finally we’ll write a negative test for the
asynchronous function as well. Let’s get started.

A Naive Attempt to Test
Let’s first approach testing an asynchronous function like we approached
tests of synchronous functions. This exercise will get you familiar with the
code to be tested and also help you see why a different testing approach is
necessary.

Switch to a new files project by changing to the tdjsa/async/files directory in your
workspace. The tools we’ll use in this project are Mocha and Chai. Let’s get
them installed right away by running the npm install command in the current
project directory—this will be our routine each time we step into a project
directory and see a package.json file in the directory.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vsjavas
http://forums.pragprog.com/forums/vsjavas

Take a look at the code in the src/files.js file. You’ll see a function that takes a
filename and eventually returns, through callbacks, either the number of
lines in the file or an error.

async/files/src/files.js
var fs = require('fs');

var linesCount = function(fileName, callback, onError) {
var processFile = function(err, data) {

if(err) {
onError('unable to open file ' + fileName);

} else {
callback(data.toString().split('\n').length);

}
};

fs.readFile(fileName, processFile);
};

module.exports = linesCount;

Let’s write a test for this function, using the approach we’ve used for syn-
chronous functions so far. Open the empty file test/files-test.js in the current files
project in the workspace and enter the following code:

var expect = require('chai').expect;
var linesCount = require('../src/files');

describe('test server-side callback', function() {
it('should return correct lines count for a valid file', function() {
//Good try, but this will not actually work

var callback = function(count) {
expect(count).to.be.eql(-2319);

};

linesCount('src/files.js', callback);
});

});

We want to verify that the linesCount function correctly returns the number of
lines in a given file. But for that, we need to pass a filename as a parameter.
It’s hard to predict what files are available on different systems. But we both
know that the source code file exists on our system, so we will use that file-
name as a parameter to the linesCount function.

At the top of files-test.js, the file containing the code under test is loaded and
the function within that file is assigned to the variable named linesCount. The
test calls the linesCount function, sends it the name of the source file as the
filename, and registers a callback function. Within the callback the test asserts
that the count received as the parameter is -2319. We know that the count of

• Click HERE to purchase this book now. discuss

Server-Side Callbacks • 9

http://media.pragprog.com/titles/vsjavas/code/async/files/src/files.js
http://pragprog.com/titles/vsjavas
http://forums.pragprog.com/forums/vsjavas

number of lines can’t be negative—clearly the test is broken. If all went well
this test should report a failure, but we’ll see what happens.

Let’s run the test with the command npm test. When run, the test passes instead
of failing, as we see in the output:

test server-side callback

✓ should return correct lines count for a valid file

1 passing (5ms)

From the automation point of view, there’s nothing worse than tests that lie.
Tests should be highly deterministic and should pass only for the right rea-
sons. This test called the linesCount function, passed a filename and a callback,
and immediately exited. There is nothing in the test that tells Mocha to wait
for the callback to be executed. So, the test did not actually wait to exercise
the assert that’s within the callback when it’s eventually called. It would be
nice if tests failed when there are no asserts in their execution path, but that’s
not the case, as we saw.

We need to tell Mocha not to assume that the test is complete when it exits
out of the test function. We need the tool to wait for the execution of the
callback function, and the assert within that, before it can declare the test
to have passed or failed.

This example serves as a good reminder to make each test fail first and then,
with minimum code, make it pass. Let’s make the test fail first.

Writing an Asynchronous Test
Tests written using Mocha can include a parameter that can be used to signal
the actual completion of tests. When a test exits, Mocha will wait for the signal
that the test is actually completed. If an assertion fails before this signal is
received or if the signal is not received within a reasonable time, it will declare
the test as failure.

Let’s edit the test so that exiting the test does not imply completion of the
test:

it('should return correct lines count for a valid file', function(done) {
var callback = function(count) {

expect(count).to.be.eql(-2319);
};

linesCount('src/files.js', callback);
});

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vsjavas
http://forums.pragprog.com/forums/vsjavas

Unlike the previous tests, this test takes on a parameter—it can be named
anything you like, but done is quite logical. It’s a way to signal to Mocha when
a test is really complete. In other words, if a parameter is present, Mocha
does not assume a test is done when it completes the test function. Instead,
it waits for a signal through that parameter to declare that the test is done.
Whether the function being tested is synchronous or asynchronous, this
technique may be used to verify results in callbacks.

Let’s run the test now and see it go up in flames, like it should:

test server-side callback

1) should return correct lines count for a valid file

0 passing (9ms)
1 failing

1) test server-side callback
should return correct lines count for a valid file:

Uncaught AssertionError: expected 15 to deeply equal -2319
+ expected - actual

-15
+-2319

at callback (test/files-test.js:8:27)
at processFile (src/files.js:8:7)
at FSReqWrap.readFileAfterClose [as oncomplete] (fs.js:404:3)

To make the test pass, let’s change -2319 to 15 in the body of the callback. As
an astute reader you may protest, “Wait, won’t this test break if the file is
changed?” Yes it will, but let’s keep our eyes on asynchrony at this time; we’ll
focus on other concerns later in the book. Here’s the change to the callback
with the correct expected value:

it('should return correct lines count for a valid file', function(done) {
var callback = function(count) {

expect(count).to.be.eql(15);
};

linesCount('src/files.js', callback);
});

The callback verifies the value passed, but when npm test is run again, Mocha
reports

test server-side callback

1) should return correct lines count for a valid file

0 passing (2s)
1 failing

• Click HERE to purchase this book now. discuss

Server-Side Callbacks • 11

http://pragprog.com/titles/vsjavas
http://forums.pragprog.com/forums/vsjavas

1) test server-side callback
should return correct lines count for a valid file:
Error: timeout of 2000ms exceeded.

Ensure the done() callback is being called in this test.

Even though the assert in the callback passed, the test failed after a 2 second
wait—the default timeout. That’s because the test never signaled its comple-
tion. To fix that, we’ll add a call to done() at the end of the callback function.
You’ll soon see how to change the default timeout. Here’s the modified test:

it('should return correct lines count for a valid file', function(done) {
var callback = function(count) {

expect(count).to.be.eql(15);
done();

};

linesCount('src/files.js', callback);
});

Let’s now run npm test and see the test passing, but this time for the right
reasons:

test server-side callback

✓ should return correct lines count for a valid file

1 passing (7ms)

Let’s write another asynchronous test to gain practice, but this time we’ll
make it a negative test.

A Negative Asynchronous Test
The test we wrote covers only the happy path of the function. The behavior
of the function when an invalid file is given needs to be verified as well. Let’s
write a test for that, again in the test/files-test.js file.

it('should report error for an invalid file name', function(done) {
var onError = function(error) {

expect(error).to.be.eql('unable to open file src/flies.js');
done();

};
linesCount('src/flies.js', undefined, onError);

});

The second test sends an invalid filename—flies instead of files—to the function
under test. The test assumes such a misnamed file doesn’t exist. Such tests
are troublesome—they’re brittle and may fail if the dependency changes.
Again, we’ll address that concern later on.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vsjavas
http://forums.pragprog.com/forums/vsjavas

The second argument to the function is undefined since it will not be used
during this call. The new third argument is a callback that verifies the error
details. Once again, this test takes in the done parameter and the callback
signals the completion of the test through that. Let’s run the test and Mocha
should report great success:

test server-side callback

✓ should return correct lines count for a valid file

✓ should report error for an invalid file name

2 passing (8ms)

Joe asks:

Does the 3-As Pattern Apply to Async Tests?
Good tests follow the 3-As pattern mentioned in Create Positive Tests, on page ?.
Asynchronous tests are no exception. The arrange part is followed by the act part,
but the assert part is embedded within the callbacks. Even though it may not be
apparent, the execution flow of the tests follows the sequence of arrange, act, and
assert.

Mocha relies on the parameter of its test functions to know when a test on
an asynchronous function is completed. Now that you know how to test
asynchronous functions running on the server side, let’s explore doing the
same for the client side. Along the way, you’ll pick up a few more tricks.

• Click HERE to purchase this book now. discuss

Server-Side Callbacks • 13

http://pragprog.com/titles/vsjavas
http://forums.pragprog.com/forums/vsjavas

