
Extracted from:

Programming Kotlin
Creating Elegant, Expressive, and

Performant JVM and Android Applications

This PDF file contains pages extracted from Programming Kotlin, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Kotlin
Creating Elegant, Expressive, and

Performant JVM and Android Applications

Venkat Subramaniam

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Jacquelyn Carter
Copy Editor: Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-635-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Sensible Warnings
Even if a piece of code is valid syntactically, some potential problems may be
lurking. Getting an early warning, during compilation time, can help us to
proactively fix such possible issues. The Kotlin compiler looks out for quite
a few potential issues in code.

For example, if a parameter that’s received in a function or a method isn’t
used, then the compiler will give a warning. In the following script, the
parameter passed to compute() isn’t used.

essence/unused.kts
fun compute(n: Int) = 0

println(compute(4))

When you run this script, in addition to displaying the result, Kotlin will also
report any warnings for unused parameters:

0
unused.kts:1:13: warning: parameter 'n' is never used
fun compute(n: Int) = 0

^

It’s a good software development practice to treat warnings as errors—an agile
practice emphasized in Practices of an Agile Developer [SH06]. Kotlin makes
that easy with the -Werror option. To use this option, place it on the command
line when you compile the code or run it as a script, like so:

$ kotlinc-jvm -Werror -script unused.kts

This option will fail the build or execution. Unlike the previous run without
that option, there will be no output when the script is run; instead an error
is reported:

error: warnings found and -Werror specified
unused.kts:1:13: warning: parameter 'n' is never used
fun compute(n: Int) = 0

^

The Kotlin compiler is sensible when giving warnings. For example, it’s not
uncommon for programs to ignore command-line arguments. Forcing us to
use parameters given to main() is considered draconian, so Kotlin doesn’t
complain about unused parameters for main(), as we see in the next example.
But if you have an unused parameter in main() within a script (a .kts file instead
of a .kt file), then Kotlin will give you a warning—it decides based on the
context.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vskotlin/code/essence/unused.kts
http://pragprog.com/titles/vskotlin
http://forums.pragprog.com/forums/vskotlin

essence/UnusedInMain.kt
fun compute(n: Int) = 0

fun main(args: Array<String>) = println(compute(4))

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vskotlin/code/essence/UnusedInMain.kt
http://pragprog.com/titles/vskotlin
http://forums.pragprog.com/forums/vskotlin

When you compile the code using kotlinc-jvm and then run it using either java
or kotlin, you’ll get the following output. The warning is from kotlinc and the
output is from the execution of the generated jar file:

UnusedInMain.kt:1:13: warning: parameter 'n' is never used
fun compute(n: Int) = 0

^
0

Starting from Kotlin 1.3, you may leave out the parameters to main() if you
don’t need them.

We saw how Kotlin tries to make a preemptive strike against potential errors.
Along those lines, the language wants you to be decisive about immutability.
Let’s explore that choice next.

Prefer val over var
To define an immutable variable–that is, a constant or a value—use val, like so:

val pi: Double = 3.14

Unlike Java, where you’d place the type before the name of the variable, in
Kotlin you place the name of the variable first, then a colon, followed by the
type. Kotlin considers the sequence Java requires as “placing the cart before
the horse” and places a greater emphasis on variable names than variable
types.

Since the type of the variable is obvious in this context, we may omit the type
specification and ask Kotlin to use type inference:

val pi = 3.14

Either way, the value of pi can’t be modified; val is like final in Java. Any attempt
to change or reassign a value to variables defined using val will result in a
compilation error. For example, the following code isn’t valid:

val pi = 3.14

pi = 3.14 //ERROR: val cannot be reassigned

What if we want to be able to change the value of a variable? For that, Kotlin
has var—also known as “keyword of shame.” Variables defined using var may
be mutated at will.

Here’s a script that creates a mutable variable and then modifies its value:

var score = 10
//or var score: Int = 10

• Click HERE to purchase this book now. discuss

Prefer val over var • 7

http://pragprog.com/titles/vskotlin
http://forums.pragprog.com/forums/vskotlin

println(score) //10

score = 11
println(score) //11

Mutating variables is a way of life in imperative style of programming. But
that’s a taboo in functional programming. In general, it’s better to prefer
immutability—that is, val over var. Here’s an example to illustrate why that’s
better:

essence/mutate.kts
var factor = 2

fun doubleIt(n: Int) = n * factor

factor = 0

println(doubleIt(2))

Don’t run the code; instead eyeball it, show it to a few of your colleagues and
ask what the output of the code will be. Take a poll. The output will be equal
to what most people said it will be—just kidding. Program correctness is not
a democratic process; thankfully, I guess.

You probably got three responses to your polling:

• The output is 4.
• The output is 0, I think.
• WHAT—the response the code evoked on someone recently.

The output of the above code is 0—maybe you guessed that right, but guessing
is not a pleasant activity when coding.

Mutability makes code hard to reason. Code with mutability also has a
higher chance of errors. And code with mutable variables is harder to paral-
lelize. In general, try really hard to use val as much as possible instead of var.
You’ll see later on that Kotlin defaults toward val and immutability, as well,
in different instances.

Whereas val in Kotlin is much like Java’s final, Kotlin—unlike Java—insists on
marking mutable variables with var. That makes it easier to search for the
presence of var in Kotlin than to search for the absence of final in Java. So in
Kotlin, it’s easier to scrutinize code for potential errors that may arise from
mutability.

A word of caution with val, however—it only makes the variable or reference
a constant, not the object referenced. So val only guarantees immutability of
the reference and doesn’t prevent the object from changing. For example,
String is immutable but StringBuilder is not. Whether you use val or var, an instance

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vskotlin/code/essence/mutate.kts
http://pragprog.com/titles/vskotlin
http://forums.pragprog.com/forums/vskotlin

of String is safe from change, but an instance of StringBuilder isn’t. In the following
code, the variable message is immutable, but the object it refers to is modified
using that variable.

val message = StringBuilder("hello ")

//message = StringBuilder("another") //ERROR

message.append("there")

In short, val only focuses on the variable or reference at hand, not what it
refers to. Nevertheless, prefer val over var where possible.

Improved Equality Check
Just like Java, Kotlin also has two types of equality checks:

• equals() method in Java, or == operator in Kotlin, is a comparison of values,
called structural equality.

• == operator in Java, or === in Kotlin, is a comparison of references, called
referential equality. Referential equality compares references and returns
true if the two references are identical—that is, they refer to the same exact
instance. The operator === in Kotlin is a direct equivalent of the ==
operator in Java.

But the structural equality operator == in Kotlin is more than the equals()
method in Java. If you perform str1.equals(str2); in Java, you may run into a
NullPointerException if the reference str1 is null. Not so when you use == in Kotlin.

Kotlin’s structural equality operator safely handles null references. Let’s
examine that with an example:

essence/equality.kts
println("hi" == "hi")
println("hi" == "Hi")
println(null == "hi")
println("hi" == null)
println(null == null)

If these comparisons were done with equals() in Java, the net result would have
been a runtime NullPointerException, but Kotlin handles the nulls safely. If the
values held in the two references are equal then the result is true, and false
otherwise. If one or the other reference is null, but not both, then the result
is false. If both the references are null, then the result of the comparison is true.
We can see this in the output, but you’ll also see an added bonus in there:

true
false

• Click HERE to purchase this book now. discuss

Improved Equality Check • 9

http://media.pragprog.com/titles/vskotlin/code/essence/equality.kts
http://pragprog.com/titles/vskotlin
http://forums.pragprog.com/forums/vskotlin

false
false
true
equality.kts:3:9: warning: condition 'null == "hi"' is always 'false'
println(null == "hi")

^
equality.kts:4:9: warning: condition '"hi" == null' is always 'false'
println("hi" == null)

^
equality.kts:5:9: warning: condition 'null == null' is always 'true'
println(null == null)

^

The output confirms the behavior of == operator like mentioned. The output
also shows yet another example of Kotlin’s sensible warnings—if the result
of comparison will always be an expected value, it prompts a warning suggest-
ing we fix the code to remove the redundant conditional check.

When == is used in Kotlin, it performs the null checks and then calls equals()
method on the object.

You’ve learned the difference between using equals() in Java and == in Kotlin.
Next let’s look at the ease with which we can create strings with embedded
expressions.

String Templates
In programs, we often create strings with embedded values of expressions.
Concatenating values to create strings using the + operator makes the code
verbose and hard to maintain. String templates solve that problem by providing
an elegant solution.

Within a double-quoted string, the $ symbol can prefix any variable to turn
that into an expression. If the expression is more complex than a simple
variable, then wrap the expression with ${}.

A $ symbol that’s not followed by a variable name or expression is treated as
a literal. You may also escape the $ symbol with a backslash to use it as a
literal.

Here’s an example with a string template. Also, it contains a plain string with
embedded $ symbols that are used as literals.

essence/stringtemplate.kts
val price = 12.25
val taxRate = 0.08

val output = "The amount $price after tax comes to $${price * (1 + taxRate)}"
val disclaimer = "The amount is in US$, that's right in \$only"

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vskotlin/code/essence/stringtemplate.kts
http://pragprog.com/titles/vskotlin
http://forums.pragprog.com/forums/vskotlin

println(output)
println(disclaimer)

In the string template assigned to output, the first $ symbol is used as a
delimiter for the expression, the variable name, that follows it. The second $
symbol is a literal since it’s followed by another $, which isn’t a variable or
expression. The third $ symbol prefixes an expression that’s wrapped in {}.
The other $ symbols in the code are used as literals. Let’s take a peek at the
output of the code:

The amount 12.25 after tax comes to $13.23
The amount is in US$, that's right in $only

The earlier caution to prefer val over var applies here too. Let’s take the code
with var we saw previously and modify it slightly to use a string template.

essence/mutateconfusion.kts
var factor = 2

fun doubleIt(n: Int) = n * factor
var message = "The factor is $factor"

factor = 0

println(doubleIt(2))
println(message)

Once again, don’t run the code, but eyeball it and figure out the output of
this code. Does it correspond with the following output?

0
The factor is 2

The variable factor within the function doubleIt() binds to the variable outside
its immediate scope—that is, in its lexical scope. The value of factor at the time
of the function call is used. The string template, on the other hand, is evalu-
ated when the variable message is created, not when its value is printed out.
These kinds of differences increase cognitive load and makes the code hard
to maintain and also error prone. No need to torture fellow programmers with
code like this. It’s inhumane. Again, as much as possible prefer val over var.

Next, let’s look at using raw strings to remove some clutter and to create
multiple lines of strings.

Raw Strings
Dealing with escape characters makes the code messy. Instead of using
escaped strings, in Kotlin we may use raw strings which start and end with

• Click HERE to purchase this book now. discuss

Raw Strings • 11

http://media.pragprog.com/titles/vskotlin/code/essence/mutateconfusion.kts
http://pragprog.com/titles/vskotlin
http://forums.pragprog.com/forums/vskotlin

three double quotes. We may use raw strings to place any character, without
the need to use escapes, and may also use them to create multiline strings.

No Escape
In an escaped string which starts and ends with a single double quote, we
can’t place a variety of characters, like new line or a double quote, for example,
without using the escape character \. Even a simple case can be unpleasant
to read, like this one:

val escaped = "The kid asked, \"How's it going, $name?\""

We had to escape the double quotes that were needed within the string. The
more we use escaped strings, the messier it becomes. Instead of using escaped
strings, in Kotlin we use raw strings. Just like escaped strings, raw strings
can also be used as string templates, but without the mess of escaping
characters. Here’s the above escaped string changed to raw string—less
clutter, more readable:

val raw = """The kid asked, "How's it going, $name?""""

Use escaped string, ironically, when you don’t need to escape anything—for
small, simple, plain vanilla strings. If you need anything more complex or
multiple lines of string, then reach over to raw strings.

Multiline Strings
The infamous + operator is often used to create multiple lines of strings, and
that leads to nasty code that’s hard to maintain. Kotlin removes that ceremony
with a multiline string, which is a raw string that contains line breaks. Mul-
tiline strings can also act as string templates.

Let’s create a string that runs across several lines, but without the + operator.

essence/memo.kts
val name = "Eve"

val memo = """Dear $name, a quick reminder about the
party we have scheduled next Tuesday at
the 'Low Ceremony Cafe' at Noon. | Please plan to..."""

println(memo)

The multiline string starts with three double quotes, contains the string
template expression to evaluate the variable name, and ends with three double
quotes. The output of this code is multiple lines of string with the embedded
expression evaluated.

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vskotlin/code/essence/memo.kts
http://pragprog.com/titles/vskotlin
http://forums.pragprog.com/forums/vskotlin

Dear Eve, a quick reminder about the
party we have scheduled next Tuesday at
the 'Low Ceremony Cafe' at Noon. | Please plan to...

That worked beautifully, but—there always is a but—what if the multiline
string were within a function, maybe within an if? Would the nesting mess
things up? Let’s find out.

essence/nestedmemo.kts
fun createMemoFor(name: String): String {

if (name == "Eve") {
val memo = """Dear $name, a quick reminder about the

party we have scheduled next Tuesday at
the 'Low Ceremony Cafe' at Noon. | Please plan to..."""

return memo
}

return ""
}

println(createMemoFor("Eve"))

The createMemoFor() function returns a multiline string if the parameter passed
is equal to Eve. Let’s see what the output beholds:

Dear Eve, a quick reminder about the
party we have scheduled next Tuesday at
the 'Low Ceremony Cafe' at Noon. | Please plan to...

The resulting string has preserved the indentation—yikes. Thankfully, it’s
not too hard to get rid of. Let’s rework the example:

fun createMemoFor(name: String): String {
if (name == "Eve") {

val memo = """Dear $name, a quick reminder about the
|party we have scheduled next Tuesday at
|the 'Low Ceremony Cafe' at Noon. | Please plan to..."""

return memo.trimMargin()
}

return ""
}

println(createMemoFor("Eve"))

We made two changes. First, we placed a | on each line of the multiline string,
starting with the second line. Second, we used the trimMargin() method, an
extension function (we discuss these in Chapter 12, Fluency in Kotlin, on
page ?), to strip the margin out of the string. With no arguments, the trimMar-
gin() method removes the spaces until the leading | character. The | character

• Click HERE to purchase this book now. discuss

Raw Strings • 13

http://media.pragprog.com/titles/vskotlin/code/essence/nestedmemo.kts
http://pragprog.com/titles/vskotlin
http://forums.pragprog.com/forums/vskotlin

that’s not in the leading position doesn’t have any impact. Here’s the output
that shows the fix worked.

Dear Eve, a quick reminder about the
party we have scheduled next Tuesday at
the 'Low Ceremony Cafe' at Noon. | Please plan to...

If you do not want to use | as the leading delimiter, because maybe your text
contains that character in arbitrary places, including the first character of
a new line, then you may choose some other character—for example, let’s
go ahead and choose ~:

val memo = """Dear $name, a quick reminder about the
~party we have scheduled next Tuesday at
~the 'Low Ceremony Cafe' at Noon. | Please plan to..."""

return memo.trimMargin("~")

In the multiline string we use ~ as the delimiter instead of the default |, and
in the call to trimMargin() we pass that specially chosen delimiter as argument.
The output of this version is the same as the one where we used the default
delimiter.

So far in this chapter, we’ve looked at the improvements to expressions and
statements in Kotlin when compared to languages like Java. But Kotlin prefers
expressions over statements. Let’s discuss that next.

• 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vskotlin
http://forums.pragprog.com/forums/vskotlin

