
Extracted from:

Programming Groovy 2
Dynamic Productivity for the Java Developer

This PDF file contains pages extracted from Programming Groovy 2, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Programming Groovy 2
Dynamic Productivity for the Java Developer

Venkat Subramaniam

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Brian P. Hogan (editor)
Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC .
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-30-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2013

http://pragprog.com

To Mythili and Balu—for being much more
than an aunt and an uncle—for being there

when I needed them most.

Introduction
The Java platform is arguably one of the most powerful and widely adopted
ecosystems today. It has three significant pieces:

• The Java Virtual Machine (JVM), which has become increasingly powerful
and more performant over the years

• The Java Development Kit (JDK), the rich set of third-party libraries and
frameworks that help us effectively leverage the power of the platform

• The set of languages on the JVM—the Java language being the first—that
help us program the platform

Languages are like vehicles that let us navigate the platform. They let us
reach into various parts of this landscape with ease. The Java language has
come a long way; its libraries have been refactored and expanded. It’s gotten
us this far, but we need to look beyond the Java language to languages that
are lightweight and that can make us more productive. When used correctly,
dynamic languages, the functional style of programming, and metaprogram-
ming capabilities can help us navigate the landscape much faster. When
viewed as vehicles, these newer languages aren’t faster cars; they’re flying
machines, giving us the capability to be several orders of magnitude more
productive.

The Java language has been flirting with metaprogramming and the functional
style of programming for a while and will support some of these features to
various degrees in future versions. We don’t have to wait for that day, however.
We can build performant JVM applications with all the dynamic capabilities
today, right now, using Groovy.

What’s Groovy?

Merriam-Webster defines groovy as “marvelous, wonderful, excellent, hip,
trendy.” The Groovy language is all of that—it’s lightweight, low-ceremony,
dynamic, object-oriented, and runs on the JVM. Groovy is open sourced under

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

the Apache License, version 2.0. It derives strength from various languages,
such as Smalltalk, Python, and Ruby, while retaining a syntax familiar to
Java programmers. Groovy compiles into Java bytecode and extends the Java
API and libraries. It runs on Java 1.5 and newer. For deployment, all we need
is a Groovy Java archive (JAR) in addition to the regular Java stuff, and we’re
all set.

Groovy is a “language that has been reborn several times.”1 James Strachan
and Bob McWhirter started it in 2003, and it was commissioned into Java
Specification Request (JSR) 241 in March 2004. Soon afterward, it was almost
abandoned because of difficulties and issues. Guillaume Laforge and Jeremy
Rayner decided to rekindle the efforts and bring Groovy back to life. Their
first effort was to fix bugs and stabilize the language features. The uncertainty
lingered for a while. A number of people, including committers and users,
simply gave up on the language. Finally, a group of smart and enthusiastic
developers joined forces with Guillaume and Jeremy, and a vibrant developer
community emerged.

The release of Groovy version 1.0 was announced on January 2, 2007. It was
encouraging to see that, well before it reached 1.0, Groovy was put to use on
commercial projects in a handful of organizations in the United States and
Europe. Organizations and developers are beginning to use Groovy at various
levels on their projects, and the time is ripe for major Groovy adoption in the
industry. Groovy version 2.0 was released in mid 2012.

Groovy shines in tools and frameworks like Grails, CodeNarc, easyb, Gradle,
and Spock. Grails, a dynamic web-development framework based on “coding
by convention,” exploits Groovy metaprogramming.2 Using Grails, we can
quickly build web applications on the JVM using Groovy, Spring, Hibernate,
and other Java frameworks.

Why Dynamic Languages?

Dynamic languages have the ability to extend a program at runtime, including
changing types, behaviors, and object structures. With these languages, we
can do things at runtime that static languages do at compile time; we can
even execute program statements that are created on the fly at runtime.

For example, if we want to compute a five percent raise on an $80,000 salary,
we could simply write the following:

1. See “A bit of Groovy history,” a blog post by Guillaume Laforge at http://glaforge.free.fr/
weblog/index.php?itemid=99.

2. http://grails.org

Introduction • viii

• Click HERE to purchase this book now. discuss

http://glaforge.free.fr/weblog/index.php?itemid=99
http://glaforge.free.fr/weblog/index.php?itemid=99
http://grails.org
http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

5.percentRaise(80000)

Yes, that’s the friendly java.lang.Integer responding to our own dynamic method,
which we can add quite easily, like so:

Integer.metaClass.percentRaise = { amount -> amount * (1 + delegate / 100.0) }

As we see here, it’s easy to add dynamic methods to classes in Groovy. The
dynamic method we added to the Integer instance, referred using the delegate
variable, returns the dollar amount increased by the appropriate percentage.

The flexibility of dynamic languages gives us the advantage of evolving pro-
grams as the applications execute. This goes far beyond code generation. We
should consider code generation to be soooo twentieth century. In fact, gen-
erated code is like an incessant itch; if we keep scratching it, it turns into a
sore. With dynamic languages, there are better ways. Dynamic languages
make it easier to prefer code synthesis, which is in-memory code-creation at
runtime. The code is synthesized based on the flow of logic through the
application and becomes active just in time.

By carefully applying dynamic languages’ capabilities, we can be more pro-
ductive as application developers. This greater productivity means we can
easily create higher levels of abstractions in shorter amounts of time. We can
also use a smaller yet more capable set of developers to create applications.
In addition, greater productivity means we can create parts of our application
quickly and get feedback from our fellow developers, testers, domain experts,
and customer representatives. And all this leads to greater agility. Tim
O’Reilly observes the following about developing web applications: “Rather
than being finished paintings, they are sketches, continually being redrawn
in response to new data.” He also makes the point that dynamic languages
are better suited to web development in “Why Scripting Languages Matter”
(see Appendix 1, Web Resources, on page ?).

Dynamic languages have been around for a long time, so why is now a great
time to get excited about them? There are at least four reasons:

• Machine speed
• Availability
• Awareness of unit testing
• Killer applications

Let’s start by talking about machine speed. Doing at runtime what other
languages do at compile time raises a concern about dynamic languages’
speed. Interpreting code at runtime rather than simply executing compiled
code adds to that concern. Fortunately, machine speed has consistently

• Click HERE to purchase this book now. discuss

Why Dynamic Languages? • ix

http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

increased over the years—handhelds have more computing power and mem-
ory today than large computers had decades ago. Tasks that were quite
unimaginable using a 1980s processor are easy to achieve today. The perfor-
mance concerns of dynamic languages are greatly eased because of processor
speeds and other improvements in our field, including better just-in-time
compilation techniques and JVM support for dynamic languages.

Now let’s talk about availability. The Internet and active “public” community-
based development have made recent dynamic languages easily accessible
and available. Developers can now easily download languages and tools and
play with them. They can even participate in community forums to influence
the evolution of these languages. The Groovy users mailing list is very active,
with constant discussions from passionate users expressing opinions of, ideas
about, and criticisms of current and future features.3 This is leading to greater
experimentation, learning, and adaptation of languages than in the past.

Next let’s look at awareness of unit testing. Most dynamic languages are
dynamically typed. The types are often inferred based on the context. There
are no compilers to flag type-casting violations at compile time. Since quite
a bit of code may be synthesized and our program can be extended at runtime,
we can’t rely upon coding-time verification alone. From the testing point of
view, writing code in dynamic languages requires greater discipline than
writing in statically typed languages. Over the past few years, we’ve seen
increased awareness among programmers (though not sufficiently greater
adoption yet) in the area of testing in general and unit testing in particular.
Most of the programmers who have taken advantage of these dynamic lan-
guages for commercial application development have also embraced testing
and unit testing.

Finally, many developers have in fact been using dynamic languages for
decades. However, for the majority of the industry to be excited about them,
we had to have killer applications—compelling stories to share with our
developers and managers. That tipping point, for Ruby in particular and for
dynamic languages in general, came in the form of Rails.4 It showed struggling
web developers how they could quickly develop applications using Ruby’s
dynamic capabilities. In the same vein came Grails, a web framework written
in Groovy and Java that offers the same productivity and ease.5

3. Visit http://groovy.codehaus.org/Mailing+Lists and http://groovy.markmail.org to see.
4. http://rubyonrails.org
5. http://grails.org

Introduction • x

• Click HERE to purchase this book now. discuss

http://groovy.codehaus.org/Mailing+Lists
http://groovy.markmail.org
http://rubyonrails.org
http://grails.org
http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

These frameworks have caused enough stir in the development community
to make the industrywide adoption of dynamic languages highly probable.

Dynamic languages, along with metaprogramming capabilities, make simple
things simpler and hard things manageable. We still have to deal with the
inherent complexity of our application, but dynamic languages let us focus
our effort where it’s deserved. When I got into Java after years of C++, features
such as reflection, a good set of libraries, and evolving framework support
made me productive. The JVM, to a certain extent, provided me with the
ability to take advantage of metaprogramming. However, I had to use some-
thing in addition to Java to tap into that potential—heavyweight tools such
as AspectJ. Like several other productive programmers, I found myself left
with two options: use the exceedingly complex and not-so-flexible Java along
with heavyweight tools, or move on to using dynamic languages such as Ruby
that are object-oriented and have metaprogramming capabilities built in. (For
instance, it takes only a couple of lines of code to do aspect-oriented program-
ming—AOP—in Ruby and Groovy.) A few years ago, taking advantage of
dynamic capabilities and metaprogramming while being productive meant
leaving behind the Java platform. (After all, we use these features to be pro-
ductive and can’t let them slow us down, right?) That is not the case anymore.
Languages such as Groovy, JRuby, and Clojure are dynamic and run on the
JVM. Using these languages, we can take full advantage of both the rich Java
platform and dynamic-language capabilities.

Why Groovy?

As Java programmers, we don’t have to switch completely to a different
language. Groovy feels like the Java language we already know, with a few
augmentations.

Dozens of scripting languages can run on the JVM—Groovy, JRuby, BeanShell,
Scheme, Jaskell, Jython, JavaScript, and others. The list could go on and
on. Our language choice should depend on a number of criteria: our needs,
our preferences, our background, the projects we work with, our corporate
technical environment, and so on. In this section, we discuss when Groovy
is the right language to use.

Groovy is an attractive language for a number of reasons:

• It has a flat learning curve.
• It follows Java semantics.
• It bestows dynamic love.
• It extends the JDK.

• Click HERE to purchase this book now. discuss

Why Groovy? • xi

http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

Let’s explore these in detail. First, we can run almost any Java code as Groovy
(see Section 2.11, Gotchas, on page ? for known problem areas), which means
a flat learning curve. We can start writing code in Groovy and, if we’re stuck,
simply switch gears and write the Java code we’re familiar with. We can later
refactor that code and make it groovier.

For example, Groovy understands the traditional for loop. So, we can write
this:

// Java Style
for(int i = 0; i < 10; i++) {

//...
}

As we learn Groovy, we can change that to the following code or one of the
other flavors for looping in Groovy (don’t worry about the syntax right now;
after all, we’re just getting started, and very soon you’ll be a pro at it):

10.times {
//...

}

Second, when programming in Groovy we can expect almost everything we
expect in Java. Groovy classes extend the same good old java.lang.Object—Groovy
classes are Java classes. The object-oriented paradigm and Java semantics
are preserved, so when we write expressions and statements in Groovy, we
already know what those mean to us as Java programmers.

Here’s a little example to show that Groovy classes are Java classes:

Introduction/UseGroovyClass.groovy
println XmlParser.class
println XmlParser.class.superclass

If we run groovy UseGroovyClass, we’ll get the following output:

class groovy.util.XmlParser
class java.lang.Object

Now let’s talk about the third reason to love Groovy. Groovy is dynamic, and
it is optionally typed. If we’ve enjoyed the benefits of other dynamically typed
languages, such as Smalltalk, Python, JavaScript, and Ruby, we can also
enjoy those in Groovy. For instance, if we want to add the method isPalindrome()
to String—a method that tells whether a word is spelled the same forward and
backward—we can add that easily with only a couple of lines of code (again,
don’t try to figure out all the details of how this works right now; we have the
rest of the book for that):

Introduction • xii

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vslg2/code/Introduction/UseGroovyClass.groovy
http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

Introduction/Palindrome.groovy
String.metaClass.isPalindrome = {->

delegate == delegate.reverse()
}

word = 'tattarrattat'
println "$word is a palindrome? ${word.isPalindrome()}"
word = 'Groovy'
println "$word is a palindrome? ${word.isPalindrome()}"

Let’s look at the output to see how the previous code works:

tattarrattat is a palindrome? true
Groovy is a palindrome? false

That’s how easy it is to extend a class—even the sacred java.lang.String
class—with convenient methods, without intruding into its source code.

Finally, as Java programmers, we rely heavily on the JDK and the API to get
our work done. These are available in Groovy. In addition, Groovy extends
the JDK with convenience methods and closure support through the Groovy
JDK (GDK). Here’s a quick example of a GDK extension to the java.util.ArrayList
class:

lst = ['Groovy', 'is', 'hip']
println lst.join(' ')
println lst.getClass()

From the output of the previous code, we can confirm that the JDK is being
used, but in addition we’re able to use the Groovy-added join() method to
concatenate the elements in the ArrayList:

Groovy is hip
class java.util.ArrayList

Groovy augments the Java we know. If a project team is familiar with Java,
is using it for most of the organization’s projects, and has a lot of Java code
to integrate and work with, then Groovy is a nice path toward productivity
gains.

What’s in This Book?

This book is about programming with Groovy; it is aimed at Java programmers
who already know the JDK well but are interested in learning the Groovy
language and its dynamic capabilities. Throughout this book we’ll explore the
Groovy language’s features with many practical examples. The objective is to
make programmers quickly productive with this interesting and powerful
language.

• Click HERE to purchase this book now. discuss

What’s in This Book? • xiii

http://media.pragprog.com/titles/vslg2/code/Introduction/Palindrome.groovy
http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

The rest of this book is organized into four parts, as follows:

In the chapters in Part I, “Beginning Groovy,” we focus on the whys and whats
of Groovy—the fundamentals that’ll help us get comfortable with general
programming in Groovy. This book is for experienced Java programmers, so
we won’t spend any time with programming basics, like what an if statement
is or how to write it. Instead, we directly dive into the similarities of Groovy
and Java, and topics that are specific to Groovy.

In Part II, “Using Groovy,” we’ll see how to use Groovy for everyday cod-
ing—working with XML, accessing databases, and working with multiple
Java/Groovy classes and scripts—so we can put Groovy to use right away
for the day-to-day tasks. We’ll also discuss the Groovy extensions and addi-
tions to the JDK so we can take advantage of both the power of Groovy and
the JDK at the same time.

In Part III, “MOPping Groovy,” we dive into Groovy’s metaprogramming
capabilities. We’ll see Groovy really shine in these chapters and you’ll learn
how to take advantage of its dynamic nature. We’ll start with the fundamentals
of the metaobject protocol (MOP), cover how to do AOP-like operations in
Groovy, and discuss dynamic method/property discovery and dispatching.
We will also explore the compile-time metaprogramming capability and see
how it can help extend and transform code during the compilation phase.

In the last part, “Using Metaprogramming,” we’ll apply Groovy metaprogram-
ming right away to create and use builders and domain-specific languages
(DSLs). Unit testing is not only necessary in Groovy because of its dynamic
nature, but it’s also easy to do—we can use Groovy to unit-test Java and
Groovy code, as you’ll see in this part of the book.

You’re reading the introduction now, of course. Here’s what’s in the rest of
the book:

In Chapter 1, Getting Started, on page ?, we’ll download and install Groovy
and take it for a test-drive using groovysh and groovyConsole. We’ll also see how
to run Groovy without these tools—from the command line and within an
integrated development environment.

In Chapter 2, Groovy for Java Eyes, on page ?, we’ll start with familiar Java
code and refactor that to Groovy. After a quick tour of Groovy features that
improve our everyday Java coding, we’ll talk about Groovy’s support for Java
5 features. Groovy follows Java semantics, except in places it does not—we’ll
also discuss gotchas that’ll help avoid surprises.

Introduction • xiv

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

In Chapter 3, Dynamic Typing, on page ?, we’ll see how Groovy’s typing is
similar to and different from Java’s typing, what Groovy really does with the
type information we provide, and when to take advantage of dynamic typing
versus optional typing. We’ll also cover how to take advantage of Groovy’s
dynamic typing, design by capability, and multimethods. For tasks that need
better performance than we can get from dynamic typing, we’ll see how we
can instruct Groovy to statically type parts of code.

In Chapter 4, Using Closures, on page ?, you’ll learn all about the exciting
Groovy feature called closures, including what they are, how they work, and
when and how to use them. Groovy closures go beyond simple lambda
expressions; they facilitate trampoline calls and memoization.

In Chapter 5, Working with Strings, on page ?, we’ll talk about Groovy strings,
working with multiline strings, and Groovy’s support for regular expressions.

In Chapter 6, Working with Collections, on page ?, we’ll explore Groovy’s
support for Java collections—lists and maps. We’ll explore various convenience
methods on collections, and we’ll never again want to use collections the old
way.

Groovy embraces and extends the JDK. We’ll explore the GDK and see the
extensions to Object and other Java classes in Chapter 7, Exploring the GDK,
on page ?.

Groovy has pretty good support for working with XML, including parsing and
creating XML documents, as we’ll see in Chapter 8, Working with XML, on
page ?.

Chapter 9, Working with Databases, on page ?, presents Groovy’s SQL
support, which will make our database-related programming easy and fun.
In this chapter, we’ll cover iterators, data sets, and how to perform regular
database operations using simpler syntax and closures. We’ll also see how
to get data from Microsoft Excel documents.

One of Groovy’s key strengths is its integration with Java. In Chapter 10,
Working with Scripts and Classes, on page ?, we’ll investigate ways to
closely interact with multiple Groovy scripts, Groovy classes, and Java
classes from within our Groovy and Java code.

Metaprogramming is one of the biggest benefits of dynamic languages in
general, and Groovy in particular; with this feature we can inspect classes at
runtime and dynamically dispatch method calls. We’ll explore Groovy’s support
for metaprogramming in Chapter 11, Exploring Metaobject Protocol (MOP), on

• Click HERE to purchase this book now. discuss

What’s in This Book? • xv

http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

page ?, beginning with the fundamentals of how Groovy handles method
calls to Groovy objects and Java objects.

With Groovy we can perform AOP-like method interceptions using GroovyInter-
ceptable and ExpandoMetaClass, as we’ll see in Chapter 12, Intercepting Methods
Using MOP, on page ?.

In Chapter 13, MOP Method Injection, on page ?, we’ll dive into Groovy
metaprogramming capabilities and learn how to inject methods at runtime.

In Chapter 14, MOP Method Synthesis, on page ?, we’ll go through how to
synthesize or generate dynamic methods at runtime.

Chapter 15, MOPping Up, on page ?, covers how to synthesize classes
dynamically, how to use metaprogramming to delegate method calls, and how
to choose between the metaprogramming techniques from the previous three
chapters.

Groovy goodness does not end with runtime metaprogramming. Groovy now
offers some of the same benefits at compile time, using abstract syntax tree
(AST) transformation techniques, as we’ll see in Chapter 16, Applying Compile-
Time Metaprogramming, on page ?.

Groovy builders are specialized classes that help create fluent interfaces for
a nested hierarchy. We discuss how to use them and how to create our own
builders in Chapter 17, Groovy Builders, on page ?.

Unit testing is not a luxury or an “if we have time” practice in Groovy. Groovy’s
dynamic nature requires unit testing. Fortunately, Groovy facilitates writing
tests and creating mock objects, as we’ll cover in Chapter 18, Unit Testing
and Mocking, on page ?. We will play with techniques that will help us use
Groovy to unit-test our Java code and our Groovy code.

We can apply Groovy’s metaprogramming capabilities to build internal DSLs
using the techniques in Chapter 19, Creating DSLs in Groovy, on page ?.
We’ll start with the basics of DSLs, including their characteristics, and
quickly jump into building them in Groovy.

Finally, in Appendix 1, Web Resources, on page ?, and Appendix 2, Bibliog-
raphy, on page ?, you’ll find all the references to web articles and books
cited throughout this book.

Introduction • xvi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

Changes Since This Book’s First Edition

This book’s first edition covered Groovy version 1.5. Groovy has come a long
way since then. This second edition is up to date with Groovy 2.1. Here’s how
the updates in this edition will help you:

• You’ll learn Groovy 2.x features.

• You’ll learn about Groovy code-generation transformations like @Delegate,
@Immutable, and so on.

• You’ll learn the benefits of the new Groovy 2.x static type-checking and
static compilation facilities.

• You will pick up tips for creating your own extension methods with the
new support for extension modules in Groovy 2.x.

• Closures in Groovy are quite exceptional, and you’ll learn about their new
support for tail-call optimization and memoization.

• You’ll learn how to integrate Java and Groovy effectively, pass Groovy
closures from Java, and even invoke dynamic Groovy methods from Java.

• You’ll find new examples to learn about the enhancements to the
metaprogramming API.

• You’ll learn how to use Mixins and implement some elegant patterns with
them.

• In addition to runtime metaprogramming, you can grasp compile-time
metaprogramming and abstract syntax tree (AST) transformations.

• You’ll see the details for building and reading JSON data.

• Additionally, you’ll learn the Groovy syntax that facilitates fluent creation
of DSLs.

Who Is This Book For?

This book is for developers working on the Java platform. It is best suited to
programmers (and testers) who understand the Java language fairly well.
Developers who understand programming in other languages can use this
book as well, but they should supplement it with books that provide them
with an in-depth understanding of Java and the JDK. For example, Effective
Java [Blo08] and Thinking in Java [Eck06] are good resources for Java.

Programmers who are somewhat familiar with Groovy can use this book to
learn some tips and tricks that they may not have the opportunity to discover

• Click HERE to purchase this book now. discuss

Changes Since This Book’s First Edition • xvii

http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

otherwise. Finally, those already familiar with Groovy may find this book
useful for training or coaching fellow developers in their organizations.

Online Resources

Web resources referenced throughout the book are collected in Appendix 1,
Web Resources, on page ?. Here are two that will help you get started:

• The Groovy website for downloading the version of Groovy used in this
book: http://groovy.codehaus.org.

• The official homepage for this book at the Pragmatic Bookshelf website:
http://www.pragprog.com/titles/vslg2. From there you can download all the
example source code for this book. You can also offer feedback by submit-
ting errata entries or posting your comments and questions in the forum
for the book.

If you’re reading the book in ebook form, you can click on the link above a
code listing to view or download the specific example.

Acknowledgments

It’s been a real pleasure watching the Groovy ecosystem grow over the past
four years. I thank the Groovy committers for creating a language and a set
of tools that help programmers to be productive and have fun at the same
time.

I’d like to thank everyone who read the first edition of this book. Special
thanks to Norbert Beckers, Giacomo Cosenza, Jeremy Flowers, Ioan Le Gué,
Fred Janon, Christopher M. Judd, Will Krespan, Jorge Lee, Rick Manocchi,
Andy O’Brien, Tim Orr, Enio Pereira, David Potts, Srivaths Sankaran, Justin
Spradlin, Fabian Topfstedt, Bryan Young, and Steve Zhang for taking the
time to report errors on the book’s errata page.

My sincere thanks and appreciation go to the technical reviewers of the second
edition of this book. They were kind enough to give their time and attention
to read through the concepts, try out the examples, and provide me valuable
feedback, corrections, and encouragements along the way. Thank you, Tim
Berglund, Mike Brady, Hamlet D’arcy, Scott Davis, Jeff Holland, Michael
Kimsal, Scott Leberknight, Joe McTee, Al Scherer, and Eitan Suez.

A few more people deserve to be called out. I thank Guillaume Laforge for his
encouragement and for taking the time to write the foreword. Cédric Champeau
and Chris Reigrut were generous to quickly read through the beta of the
second edition and provide valuable feedback. I am indebted to you; thank

Introduction • xviii

• Click HERE to purchase this book now. discuss

http://groovy.codehaus.org
http://www.pragprog.com/titles/vslg2
http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

you. I also thank Thilo Maier for reporting errors on the errata page for the
second edition.

Special thanks to Brian Hogan, editor for the second edition, for his reviews,
comments, suggestions, and encouragement. He provided much-needed
guidance throughout the creation of this edition.

Thanks to the entire Pragmatic Programmers team for taking up this edition
and for their support throughout the production process.

• Click HERE to purchase this book now. discuss

Acknowledgments • xix

http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

