
Extracted from:

Programming Groovy 2
Dynamic Productivity for the Java Developer

This PDF file contains pages extracted from Programming Groovy 2, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Programming Groovy 2
Dynamic Productivity for the Java Developer

Venkat Subramaniam

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Brian P. Hogan (editor)
Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC .
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-30-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2013

http://pragprog.com

To Mythili and Balu—for being much more
than an aunt and an uncle—for being there

when I needed them most.

Since Groovy supports Java syntax and preserves the Java semantics, we
can intermix Java style and Groovy style at will. In this chapter we’ll start on
familiar ground and transition to a more Groovy style of coding. We’ll begin
with tasks we’re used to doing in Java, and as we transition them to Groovy
code we’ll see how the Groovy versions are more concise and expressive. At
the end of this chapter, we’ll look at some “gotchas”—a few things that might
catch us off guard if we aren’t expecting them.

2.1 From Java to Groovy

Let’s start with a piece of Java code with a simple loop. We’ll first run it
through Groovy. Then we’ll refactor it from Java style to Groovy style. As we
evolve the code, each version will do the same thing, but the code will be more
expressive and concise. It will feel like our refactoring is on steroids. Let’s
begin.

Hello, Groovy

Let’s start with a Java code example that’s also Groovy code, saved in a file
named Greetings.groovy.

// Java code
public class Greetings {

public static void main(String[] args) {
for(int i = 0; i < 3; i++) {
System.out.print("ho ");

}

System.out.println("Merry Groovy!");
}

}

Let’s execute this code using the command groovy Greetings.groovy and take a
look at the output:

ho ho ho Merry Groovy!

That’s a lot of code for such a simple task. Still, Groovy obediently accepted
and executed it.

Groovy has a higher signal-to-noise ratio than Java. Hence, less code, more
result. In fact, we can get rid of most of the code from the previous program
and still have it produce the same result. Let’s start by removing the line-
terminating semicolons. Losing the semicolons reduces noise and makes the
code more fluent.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

Now let’s remove the class and method definitions. Groovy is still happy (or
is it happier?).

Default Imports

We don’t have to import all the common classes/packages when we write Groovy
code. For example, Calendar readily refers to java.util.Calendar. Groovy automatically
imports the following Java packages: java.lang, java.util, java.io, and java.net. It also imports
the classes java.math.BigDecimal and java.math.BigInteger. In addition, the Groovy packages
groovy.lang and groovy.util are imported.

GroovyForJavaEyes/LightGreetings.groovy
for(int i = 0; i < 3; i++) {

System.out.print("ho ")
}

System.out.println("Merry Groovy!")

We can go even further. Groovy understands println() because it has been added
on java.lang.Object. It also has a lighter form of the for loop that uses the Range
object, and Groovy is lenient with parentheses. So, we can reduce the previous
code to the following:

GroovyForJavaEyes/LighterGreetings.groovy
for(i in 0..2) { print 'ho ' }

println 'Merry Groovy!'

The output from the previous code is the same as the Java code we started
with, but the code is a lot lighter. Simple things are simple to do in Groovy.

Ways to Loop

We’re not restricted to the traditional for loop in Groovy. We already used the
range 0..2 in the for loop. Groovy provides quite a number of elegant ways to
iterate; let’s look at a few.

Groovy has added a convenient upto() instance method to java.lang.Integer; let’s
use that to iterate.

GroovyForJavaEyes/WaysToLoop.groovy
0.upto(2) { print "$it "}

Here we called upto() on 0, which is an instance of Integer. The output should
display each of the values in the range we picked.

0 1 2

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/LightGreetings.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/LighterGreetings.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/WaysToLoop.groovy
http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

So, what’s that $it in the code block? In this context, it represents the index
value through the loop. The upto() method accepts a closure as a parameter.
If the closure expects only one parameter, we can use the default name it for
it in Groovy. Keep that in mind, and move on for now; we’ll discuss closures
in more detail in Chapter 4, Using Closures, on page ?. The $ in front of the
variable it tells the method print() to print the value of the variable instead of
the characters “it”—using this feature we can embed expressions within
strings, as you’ll see in Chapter 5, Working with Strings, on page ?.

With the upto() method we can set both lower and upper limits. If we start at
0, we can also use the times() method, like in the next example.

GroovyForJavaEyes/WaysToLoop.groovy
3.times { print "$it "}

This version of code will produce the same output as the previous version,
as we can see:

0 1 2

By using the step() method, we can skip values while looping.

GroovyForJavaEyes/WaysToLoop.groovy
0.step(10, 2) { print "$it "}

The output from the code will show select values in the range:

0 2 4 6 8

We can also iterate or traverse a collection of objects using similar methods,
as you’ll see later in Chapter 6, Working with Collections, on page ?.

To go further, we can rewrite the greetings example using the methods you
learned earlier. Look at how short the following Groovy code is compared to
the Java code we started with:

GroovyForJavaEyes/WaysToLoop.groovy
3.times { print 'ho ' }
println 'Merry Groovy!'

To confirm that this works, let’s run the code and take a look at the output.

ho ho ho Merry Groovy!

A Quick Look at the GDK

One of the Java Platform’s key strengths is its Java Development Kit (JDK).
To program in Groovy, we’re not forced to learn a new set of classes and
libraries. Groovy extends the powerful JDK by adding convenience methods
to various classes. These extensions are available in the library called the

• Click HERE to purchase this book now. discuss

From Java to Groovy • 9

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/WaysToLoop.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/WaysToLoop.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/WaysToLoop.groovy
http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

GDK, or the Groovy JDK (http://groovy.codehaus.org/groovy-jdk). We can leverage the
JDK even further in Groovy by using the Groovy convenience methods. Let’s
whet our appetites by making use of a GDK convenience method for talking
to an external process.

I spend part of my life maintaining version-control systems. Whenever a file
is checked in, back-end hooks exercise some rules, execute processes, and
send out notifications. In short, I have to create and interact with processes.
Let’s see how Groovy can help here.

In Java, we can use java.lang.Process to interact with a system-level process.
Suppose we want to invoke Subversion’s help from within our code; well,
here’s the Java code for that:

//Java code
import java.io.*;
public class ExecuteProcess {

public static void main(String[] args) {
try {
Process proc = Runtime.getRuntime().exec("svn help");
BufferedReader result = new BufferedReader(

new InputStreamReader(proc.getInputStream()));
String line;
while((line = result.readLine()) != null) {

System.out.println(line);
}

} catch(IOException ex) {
ex.printStackTrace();

}
}

}

java.lang.Process is very helpful, but we had to jump through some hoops to use
it in the previous code; in fact, all the exception-handling code and effort to
get to the output can make us dizzy. The GDK makes this insanely simple by
adding an execute() method on the java.lang.String class:

GroovyForJavaEyes/Execute.groovy
println "svn help".execute().text

Compare the two pieces of code. They remind me of the swordfight scene from
the movie Raiders of the Lost Ark; the Java code is pulling a major stunt like
the villain with the sword.1 Groovy, on the other hand, like Indy, effortlessly
gets the job done. Don’t get me wrong—I am certainly not calling Java the
villain. We’re still using Process and the JDK in Groovy code. Our enemy is the

1. http://www.youtube.com/watch?v=anEuw8F8cpE

• 10

• Click HERE to purchase this book now. discuss

http://groovy.codehaus.org/groovy-jdk
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Execute.groovy
http://www.youtube.com/watch?v=anEuw8F8cpE
http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

unnecessary complexity that makes it harder and more time-consuming to
utilize the power of the JDK and the Java platform.

In one of the Subversion hooks I maintain, a refactoring session helped reduce
more than fifty lines of Java code to a mere three lines of Groovy code. Which
of the previous two versions would we prefer? The short and sweet one-liner,
of course (unless we’re consultants who get paid by the number of lines of
code we write…).

When we called the execute() method on the instance of String, Groovy created
an instance that extends java.lang.Process, just like the exec() method of Runtime
did in the Java code. We can verify this by using the following code:

GroovyForJavaEyes/Execute.groovy
println "svn help".execute().getClass().name

When run on a Unix-like machine, the code will report as follows:

java.lang.UNIXProcess

On a Windows machine, we’ll get this:

java.lang.ProcessImpl

When we call text, we’re calling the Groovy-added method getText() on the Process
to read the process’s entire standard output into a String. If we simply want
to wait for a process to finish, either waitFor() or the Groovy-added method
waitForOrKill() that takes a timeout in milliseconds will help. Go ahead—try the
previous code.

Instead of using Subversion, we can try other commands; simply substitute
svn help for some other program (such as groovy -v):

GroovyForJavaEyes/Execute.groovy
println "groovy -v".execute().text

The separate Groovy process we invoked from within our Groovy script will
report the version of Groovy.

GroovyForJavaEyes/Execute.output
Groovy Version: 2.1.1 JVM: 1.7.0_04-ea Vendor: Oracle Corporation OS: Mac OS X

This code sample works on Unix-like systems and on Windows. Similarly, on
a Unix-like system, to get the current-directory listing, we can call ls:

GroovyForJavaEyes/Execute.groovy
println "ls -l".execute().text

If we’re on Windows, simply replacing ls with dir will not work. The reason is
that although ls is a program we’re executing on Unix-like systems, dir is not

• Click HERE to purchase this book now. discuss

From Java to Groovy • 11

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Execute.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Execute.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Execute.output
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Execute.groovy
http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

a program—it’s a shell command. So, we have to do a little more than call dir.
Specifically, we need to invoke cmd and ask it to execute the dir command:

GroovyForJavaEyes/Windows/ExecuteDir.groovy
println "cmd /C dir".execute().text

We’ve looked at how the GDK extensions can make our coding life much
easier, but we’ve merely scratched the GDK’s surface. We’ll look at more GDK
goodness in Chapter 7, Exploring the GDK, on page ?.

safe-navigation operator

Groovy has a number of little features that are exciting and help ease the
development effort. You’ll find them throughout this book. One such feature
is the safe navigation operator (?.). It eliminates the mundane check for null,
as in the next example:

GroovyForJavaEyes/Ease.groovy
def foo(str) {

//if (str != null) { str.reverse() }
str?.reverse()

}

println foo('evil')
println foo(null)

The ?. operator in the method foo() (programming books are required to have
at least one method named “foo”) calls the method or property only if the
reference is not null. Let’s run the code and look at the output:

live
null

The call to reverse() on the null reference using ?. resulted in a null instead of a
NullPointerException—another way Groovy reduces noise and effort.

Exception Handling

Groovy has less ceremony than Java. That’s crystal-clear in exception han-
dling. Java forces us to handle checked exceptions. Consider a simple case:
we want to call Thread’s sleep() method. (Groovy provides an alternate sleep()
method; see Using sleep, on page ?.) Java is adamant that we catch
java.lang.InterruptedException. What does a Java developer do when forced? Finds
a way around doing it. The result? Lots of empty catch blocks, right? Check
this out:

GroovyForJavaEyes/Sleep.java
// Java code
try {

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Windows/ExecuteDir.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Ease.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Sleep.java
http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

Thread.sleep(5000);
} catch(InterruptedException ex) {

// eh? I'm losing sleep over what to do here.
}

Having an empty catch block is worse than not handling an exception. If we
put in an empty catch block, we’re suppressing the exception. If we don’t
handle it in the first place, it is propagated to the caller, who either can do
something about it or can pass it yet again to its caller.

Groovy does not force us to handle exceptions that we don’t want to handle
or that are inappropriate at the current level of code. Any exception we don’t
handle is automatically passed on to a higher level. Here’s an example of
Groovy’s answer to exception handling:

GroovyForJavaEyes/ExceptionHandling.groovy
def openFile(fileName) {

new FileInputStream(fileName)
}

The method openFile() does not handle the infamous FileNotFoundException. If the
exception occurs, it’s not suppressed. Instead, it’s passed to the calling code,
which can handle it, as in the next example:

GroovyForJavaEyes/ExceptionHandling.groovy
try {

openFile("nonexistentfile")
} catch(FileNotFoundException ex) {

// Do whatever you like about this exception here
println "Oops: " + ex

}

If we are interested in catching all Exceptions that may be thrown, we can
simply omit the exception type in the catch statement:

GroovyForJavaEyes/ExceptionHandling.groovy
try {

openFile("nonexistentfile")
} catch(ex) {

// Do whatever you like about this exception here
println "Oops: " + ex

}

With the catch(ex) without any type in front of the variable ex, we can catch
just about any exception thrown our way. Beware: this doesn’t catch Errors
or Throwables other than Exceptions. To catch all of them, use catch(Throwable
throwable).

• Click HERE to purchase this book now. discuss

From Java to Groovy • 13

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/ExceptionHandling.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/ExceptionHandling.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/ExceptionHandling.groovy
http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

As we can see, Groovy lets us focus on getting our work done rather than on
tackling annoying system-level details.

Groovy as Lightweight Java

Groovy has other features that make it lighter and easier to use. Here are
some:

• The return statement is almost always optional (see Section 2.11, Gotchas,
on page ?).

• The semicolon (;) is almost always optional, though we can use it to sepa-
rate statements (see The Semicolon Is Almost Always Optional, on page
?).

• Methods and classes are public by default.

• The ?. operator dispatches calls only if the object reference is not null.

• We can initialize JavaBeans using named parameters (see Section 2.2,
JavaBeans, on page ?).

• We’re not forced to catch exceptions that we don’t care to handle. They
get passed to the caller of our code.

• We can use this within static methods to refer to the Class object. In the next
example, the learn() method returns the class so we can chain calls:

class Wizard {
def static learn(trick, action) {

//...
this

}
}
Wizard.learn('alohomora', {/*...*/})
.learn('expelliarmus', {/*...*/})
.learn('lumos', {/*...*/})

We’ve seen the expressive and concise nature of Groovy. Next we’ll look at
how Groovy reduces clutter in one of the most fundamental features of Java.

• 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

