Extracted from:

Programming Groovy 2

Dynamic Productivity for the Java Developer

This PDF file contains pages extracted from Programming Groovy 2, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Th
Pra ematic
ogrammers

Pro %’ammin

roovy

Dynamic Productivity
for the Java Developer

Venkat Subramaniam
Foreword by Guillaume Laforge
Edited by Brian P. Hogan

Programming Groovy 2

Dynamic Productivity for the Java Developer

Venkat Subramaniam

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Brian P. Hogan (editor)

Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC .
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-937785-30-7

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—July 2013

http://pragprog.com

To Mythili and Balu—for being much more
than an aunt and an uncle—for being there
when I needed them most.

In Java, we can use reflection at runtime to explore our program’s structure,
plus its classes, their methods, and the parameters they take. However, we're
still restricted to the static structure we've created. We can’t change an object’s
type or let it acquire behavior dynamically at runtime—at least not yet.
Imagine if we could add methods and behavior dynamically based on the
current state of our application or the inputs it receives. This would make
our code flexible, and we could be creative and productive. Well, we don’t
have to imagine that anymore—metaprogramming provides this functionality
in Groovy.

How extensible can we design applications to be with these features? Quite.
I recently had the opportunity to consult with a company that transitioned
from creating Java-based web applications to using Groovy and Grails. Their
product required certain customization in the field after deployment. In their
existing system, this took them weeks of effort and the time of a few program-
mers and testers. Working closely with their key developers, we managed to
automate the customization using Groovy metaprogramming and some back-
end services. Immediately, the organization realized higher throughput and
productivity.

Metaprogramming means writing programs that manipulate programs,
including themselves. Dynamic languages such as Groovy provide this capa-
bility through the metaobject protocol (MOP). Creating classes, writing unit
tests, and introducing mock objects are all easy with Groovy’s MOP.

In Groovy, we can use MOP to invoke methods dynamically and synthesize
classes and methods on the fly. This can give us the feeling that our object
favorably changed its class. Grails/GORM uses this facility, for example, to
synthesize methods for database queries. With MOP we can create internal
domain-specific languages (DSLs) in Groovy (see Chapter 19, Creating DSLs

to learn and exploit. We'll investigate several concepts in MOP across this
and the next few chapters.

In this chapter, we will explore MOP by looking at what makes a Groovy object
and how Groovy resolves method calls for Java objects and Groovy objects.
We'll then look at ways to query for methods and properties and, finally, see
how to access objects dynamically.

Once you've absorbed the fundamentals in this chapter, you'll be ready to
learn how to intercept method calls in Chapter 12, Intercepting Methods Using

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

*8

into classes at runtime in Chapter 13, MOP Method Injection, on page ?, and

11.1 Groovy Object

The flexibility Groovy offers can be confusing at first, so if we want to take
full advantage of MOP, we need to understand Groovy objects and Groovy’s
method handling.

Groovy objects are Java objects with additional capabilities. Groovy objects
have a greater number of dynamic behaviors than do compiled Java objects
in Groovy. Also, Groovy handles method calls to Java objects differently than
to Groovy objects.

In a Groovy application we’ll work with three kinds of objects: POJOs, POGOs,
and Groovy interceptors. Plain old Java objects (POJOs) are regular Java
objects—we can create them using Java or other languages on the Java Vir-
tual Machine (JVM). Plain old Groovy objects (POGOs) are classes written in
Groovy. They extend java.lang.Object but implement the groovy.lang.GroovyObject
interface. Groovy interceptors are Groovy objects that extend GroovyInterceptable
and have a method-interception capability, which we’ll soon discuss. Groovy
defines the GroovyObject interface like this:

//This is an excerpt of GroovyObject.java from Groovy source code
package groovy.lang;
public interface GroovyObject {

Object invokeMethod(String name, Object args);

Object getProperty(String property);

void setProperty(String property, Object newValue);

MetaClass getMetaClass();

void setMetaClass(MetaClass metaClass);

}

invokeMethod(), getProperty(), and setProperty() make Groovy objects highly dynamic.
We can use them to work with methods and properties created on the fly.
getMetaClass() and setMetaClass() make it very easy to create proxies to intercept
method calls on POGOs, as well as to inject methods on POGOs. Once a class
is loaded into the JVM, we can’t change the metaobject Class for it. However,
we can change its MetaClass by calling setMetaClass(). This gives us a feeling that
the object changed its class at runtime.

Let’s look at the Groovyinterceptable interface next. It's a marker interface that
extends GroovyObject, and all method calls—both existing methods and nonex-
istent methods—on an object that implements this interface are intercepted
by its invokeMethod().

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

Groovy Object * 9

//This is an excerpt of GroovylInterceptable.java from Groovy source code
package groovy.lang;

public interface GroovyInterceptable extends GroovyObject {

}

Groovy allows metaprogramming for POJOs and POGOs. For POJOs, Groovy
maintains a MetaClassRegistry class of MetaClasses, as the following figure shows.
POGOs, on the other hand, have a direct reference to their MetaClass.

MetaClassRegistry O—) Map — MetaClass

Class (for POJO) GroovyObject (POGO)

Figure 10—PO0JOs, POGOs, and their MetaClass

When we call a method, Groovy checks whether the target object is a POJO
or a POGO. Groovy’s method handling is different for each of these types.

For a POJO, Groovy fetches its MetaClass from the application-wide MetaClassReg-
istry and delegates method invocation to it. So, any interceptors or methods
we've defined on its MetaClass take precedence over the POJO’s original method.

For a POGO, Groovy takes a few extra steps, as illustrated in the following
figure. If the object implements Groovyinterceptable, then all calls are routed to
its invokeMethod(). Within this interceptor, we can route calls to the actual
method, making aspect-oriented-programming-like operations possible.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

*10

class implements
GroovyInterceptable?,

(call its invokeMethod ())

yes

method exists
inMetaClass or
class?

Call interceptor or
original method

has a property
with method name

that property
is of type Closure?

GII closure’s call () methca
no

has
methodMissing ()2,

(call its methodMissing ())
invokeMethod () ?
Grow MlssingMethodExceptionD (call its invokeMethod ())

Figure 11—How Groovy handles method calls on a POGO

yes

no has

If the POGO does not implement Groovylnterceptable, then Groovy looks for the
method first in the POGO’s MetaClass and then, if it’s not found, on the POGO
itself. If the POGO has no such method, Groovy looks for a property or a field
with the method name. If that property or field is of type Closure, Groovy invokes
that in place of the method call. If Groovy finds no such property or field, it
makes two last attempts. If the POGO has a method named methodMissing(), it
calls it. Otherwise, it calls the POGO’s invokeMethod(). If we've implemented this
method on our POGO, it’s used. The default implementation of invokeMethod()
throws a MissingMethodException, indicating the failure of the call.

Let’s see in code the mechanism discussed earlier, using classes with different
options to illustrate Groovy’s method handling. Study the code, and try to
figure out which methods Groovy executes in each of the cases (while walking
through the following code, refer to Figure 11, How Groovy handles method
calls on @ POGO, on page 10); T

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

Groovy Object ® 11

ExploringMOP/TestMethodInvocation.groovy
class TestMethodInvocation extends GroovyTestCase {
void testInterceptedMethodCallonP0JO() {
def val = new Integer(3)
Integer.metaClass.toString = {-> 'intercepted' }

assertEquals "intercepted", val.toString()

}

void testInterceptableCalled() {
def obj = new AnInterceptable()
assertEquals 'intercepted', obj.existingMethod()
assertEquals 'intercepted', obj.nonExistingMethod()

}

void testInterceptedExistingMethodCalled() {
AGroovyObject.metaClass.existingMethod2 = {-> 'intercepted' }
def obj = new AGroovyObject()
assertEquals 'intercepted', obj.existingMethod2()

}

void testUnInterceptedExistingMethodCalled() {
def obj = new AGroovyObject()
assertEquals 'existingMethod', obj.existingMethod()

}

void testPropertyThatIsClosureCalled() {
def obj = new AGroovyObject()
assertEquals 'closure called', obj.closureProp()

}

void testMethodMissingCalledOnlyForNonExistent() {
def obj = new ClassWithInvokeAndMissingMethod()
assertEquals 'existingMethod', obj.existingMethod()
assertEquals 'missing called', obj.nonExistingMethod()

}

void testInvokeMethodCalledForOnlyNonExistent() {
def obj = new ClassWithInvokeOnly()
assertEquals 'existingMethod', obj.existingMethod()
assertEquals 'invoke called', obj.nonExistingMethod()

}

void testMethodFailsOnNonExistent() {
def obj = new TestMethodInvocation()
shouldFail (MissingMethodException) { obj.nonExistingMethod() }
}

}

class AnInterceptable implements GroovyInterceptable {
def existingMethod() {}

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vslg2/code/ExploringMOP/TestMethodInvocation.groovy
http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

*12

def invokeMethod(String name, args) { 'intercepted' }

class AGroovyObject {
def existingMethod() { 'existingMethod' }
def existingMethod2() { 'existingMethod2' }
def closureProp = { 'closure called' }

class ClassWithInvokeAndMissingMethod {
def existingMethod() { 'existingMethod' }
def invokeMethod(String name, args) { 'invoke called' }
def methodMissing(String name, args) { 'missing called' }

}

class ClassWithInvokeOnly {
def existingMethod() { 'existingMethod' }
def invokeMethod(String name, args) { 'invoke called' }

}

The following output confirms that all the tests pass and Groovy handles the
method as discussed:

Time: 0.047
0K (9 tests)

11.2 Querying Methods and Properties

At runtime, we can query an object’s methods and properties to find out if
the object supports a certain behavior. This is especially useful for behavior
we add dynamically at runtime. We can add behavior not only to classes, but
also to select instances of a class.

We can use MetaObjectProtocol’s getMetaMethod() (MetaClass extends MetaObjectProtocol)
to get a metamethod. We can use getStaticMetaMethod() if we're looking for a
static method. To get a list of overloaded methods, we use the plural forms
of these methods—getMetaMethods() and getStaticMetaMethods(). Similarly, we can
use getMetaProperty() and getStaticMetaProperty() for a metaproperty. If we want
simply to check for existence and not get the metamethod or metaproperty,
we use respondsTo() to check for methods and hasProperty() to check for properties.

MetaMethod “represents a Method on a Java object a little like Method except
without using reflection to invoke the method,” according to the Groovy doc-
umentation. If we have a method name as a string, we can call getMetaMethod()
and use the resulting MetaMethod to invoke our method, like so:

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

Querying Methods and Properties ® 13

ExploringMOP/UsingMetaMethod.groovy

str = "hello"

methodName = 'toUpperCase'

// Name may come from an input instead of being hard coded

methodOfInterest = str.metaClass.getMetaMethod(methodName)

println methodOfInterest.invoke(str)

The dynamically invoked method produces this output:

HELLO

We don’t have to know a method name at coding time. We can get it as input
and invoke the method dynamically.

To find out whether an object would respond to a method call, we can use
the respondsTo() method. It takes as parameters the instance we're querying,
the name of the method we're querying for, and an optional comma-separated
list of arguments intended for that method. It returns a list of MetaMethods for
the matching methods. Let’s use that in an example:

ExploringMOP/UsingMetaMethod.groovy
print "Does String respond to toUpperCase()? "
println String.metaClass.respondsTo(str, 'toUpperCase')? 'yes' : 'no'

print "Does String respond to compareTo(String)? "
println String.metaClass.respondsTo(str, 'compareTo', "test")? 'yes' : 'no'

print "Does String respond to toUpperCase(int)? "
println String.metaClass.respondsTo(str, 'toUpperCase', 5)? 'yes' : 'no'

Here’s the output from the code:

Does String respond to toUpperCase()? yes
Does String respond to compareTo(String)? yes
Does String respond to toUpperCase(int)? no

getMetaMethod() and respondsTo() offer a nice convenience. We can simply send
these methods the arguments for a method we're looking for. getMetaMethod()
and respondsTo() don’t insist on an array of the arguments’ Class like the getMethod|()
method in Java reflection. Even better, if the method we're interested in does
not take any parameters, don’'t send any arguments, not even a null. This is
because the last parameter to these methods is an array of parameters and
Groovy treats it as optional.

There was one more magical thing taking place in the previous code: we used
Groovy’s special treatment of boolean (for more information, see Section 2.7,

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vslg2/code/ExploringMOP/UsingMetaMethod.groovy
http://media.pragprog.com/titles/vslg2/code/ExploringMOP/UsingMetaMethod.groovy
http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

14

of MetaMethods, and since we used the result in a conditional statement (the ?:
operator), Groovy returned true if there were any methods, and false otherwise.
So, we don’t have to explicitly check whether the size of the returned list is
greater than zero—Groovy does that for us.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vslg2
http://forums.pragprog.com/forums/vslg2

