
Extracted from:

Programming Scala
Tackle Multi-Core Complexity on the JVM

This PDF file contains pages extracted from Programming Scala, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Venkat Subramaniam.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-31-X

ISBN-13: 978-1-934356-31-9

Printed on acid-free paper.

P1.0 printing, June 2009

Version: 2009-7-7

http://www.pragprog.com

Chapter 7

Traits and Type Conversions
Traits are like interfaces with a partial implementation. Traits provide

a middle ground between single and multiple inheritance because you

can mix them in or include them in other classes. This allows you to

enhance a class with a set of features.

Single implementation inheritance forces you to model everything into a

linear hierarchy. However, the real world is full of crosscutting concerns

—concepts that cut across and affect abstractions that do not fall under

the same class hierarchy. Security, logging, validation, transactions,

resource allocation, and management are all examples of such cross-

cutting concerns in a typical enterprise application. Scala’s traits allow

you to apply those concerns to arbitrary classes without the pain that

arises from multiple implementation inheritance.

In this chapter, you’ll learn Scala’s support for abstraction and object

models. Much of this will feel like magic. Scala’s implicit conversion

allows you to treat an instance of one class as an instance of another.

This allows you to attach methods to an object without modifying the

original class, by implicitly wrapping the instance in a façade. You’ll

use that trick to see how to create a DSL.

7.1 Traits

A trait is a behavior that can be mixed into or assimilated into a class

hierarchy. Say we want to model a Friend. We can mix that into any

class, Man, Woman, Dog, and so on, without having to inherit them all

from a common base class.

TRAITS 94

Assume we’ve modeled a class Human and want to make it friendly. A

friend is someone who listens. So, here is the listen method that we’d

add to the Human class:

class Human(val name: String) {

def listen() = println("Your friend " + name + " is listening")

}

class Man(override val name: String) extends Human(name)

class Woman(override val name: String) extends Human(name)

One disadvantage of the previous code is the friendly quality does not

quite stand out and is merged into the Human class. Furthermore, a

few weeks into development, we realize we forgot man’s best friend.

Dogs are great friends—they listen to us quietly when we have a lot

to unload. But, how can we make a Dog a friend? We can’t inherit a

Dog from a Human for that purpose. The Java approach to solving this

problem would be to create an interface Friend and have Human and Dog

implement it. We’re forced to provide different implementations in these

two classes irrespective of whether the implementations are different.

This is where Scala’s traits come in. A trait is like an interface with a

partial implementation. The vals and vars you define and initialize in a

trait get internally implemented in the classes that mix the trait in. Any

vals and vars defined but not initialized are considered abstract, and

the classes that mix in these traits are required to implement them. We

can reimplement the Friend concept as a trait:

Download TraitsAndTypeConversions/Friend.scala

trait Friend {

val name: String

def listen() = println("Your friend " + name + " is listening")

}

Here we have defined Friend as a trait. It has a val named name that

is treated as abstract. We also have the implementation of a listen()

method. The actual definition or the implementation of name will be

provided by the class that mixes in this trait. Let’s look at ways to mix

in the previous trait:

Download TraitsAndTypeConversions/Human.scala

class Human(val name: String) extends Friend

Download TraitsAndTypeConversions/Man.scala

class Man(override val name: String) extends Human(name)

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Friend.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Human.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Man.scala
http://www.pragprog.com/titles/vsscala

TRAITS 95

Download TraitsAndTypeConversions/Woman.scala

class Woman(override val name: String) extends Human(name)

The class Human mixes in the Friend trait. If a class does not extend

from any other class, then use the extends keyword to mix in the trait.

The class Human and its derived classes Man and Woman simply use

the implementation of the listen() method provided in the trait. We can

override this implementation if we like, as we’ll see soon.

You can mix in any number of traits. To mix in additional traits, use

the keyword with. You will also use the keyword with to mix in your first

trait if your class already extends from another class like the Dog in this

next example. In addition to mixing in the trait, we have overridden its

listen() method in Dog.

Download TraitsAndTypeConversions/Animal.scala

class Animal

Download TraitsAndTypeConversions/Dog.scala

class Dog(val name: String) extends Animal with Friend {

//optionally override method here.

override def listen = println(name + "'s listening quietly")

}

You can call the methods of a trait on the instances of classes that mix

it in. You can also treat a reference to such classes as a reference of the

trait:

Download TraitsAndTypeConversions/UseFriend.scala

val john = new Man("John")

val sara = new Woman("Sara")

val comet = new Dog("Comet")

john.listen

sara.listen

comet.listen

val mansBestFriend : Friend = comet

mansBestFriend.listen

def helpAsFriend(friend: Friend) = friend listen

helpAsFriend(sara)

helpAsFriend(comet)

The output from the previous code is shown here:

Your friend John is listening

Your friend Sara is listening

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Woman.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Animal.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Dog.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/UseFriend.scala
http://www.pragprog.com/titles/vsscala

SELECTIVE MIXINS 96

Comet's listening quietly

Comet's listening quietly

Your friend Sara is listening

Comet's listening quietly

Traits look similar to classes but have some significant differences.

First, they require the mixed-in class to implement the uninitialized

(abstract) variables and values declared in them. Second, their con-

structors cannot take any parameters. Traits are compiled into Java

interfaces with corresponding implementation classes that hold any

methods implemented in the traits.

Traits do not suffer from the method collision problem that generally

arise from multiple inheritance. They avoid it by late binding with the

method of the class that mixes them in. So, a call to super within a trait

resolves to a method on another trait or the class that mixes it in, as

you’ll see soon.

7.2 Selective Mixins

In the previous example, we mixed the trait Friend into the Dog class.

This allows us to treat any instance of the Dog class as a Friend; that is,

all Dogs are Friends.

You can also mix in traits selectively at an instance level. This will allow

you to treat a specific instance of a class as a trait. Let’s look at an

example:

Download TraitsAndTypeConversions/Cat.scala

class Cat(val name: String) extends Animal

Cat does not mix in the Friend trait, so we can’t treat an instance of Cat

as a Friend. Any attempts to do so, as you can see here, will result in

compilation errors:

Download TraitsAndTypeConversions/UseCat.scala

def useFriend(friend: Friend) = friend listen

val alf = new Cat("Alf")

val friend : Friend = alf // ERROR

useFriend(alf) // ERROR

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Cat.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/UseCat.scala
http://www.pragprog.com/titles/vsscala

DECORATING WITH TRAITS 97

Here you can see the errors:

(fragment of UseCat.scala):4: error: type mismatch;

found : Cat

required: Friend

val friend : Friend = alf // ERROR

^

(fragment of UseCat.scala):6: error: type mismatch;

found : Cat

required: Friend

useFriend(alf) // ERROR

^

two errors found

!!!

discarding <script preamble>

!!!

discarding <script preamble>

Scala, however, does offer help for cat lovers, and we can exclusively

treat our special pet as a Friend if we want. When creating an instance,

simply mark it using the with keyword:

Download TraitsAndTypeConversions/TreatCatAsFriend.scala

def useFriend(friend: Friend) = friend listen

val snowy = new Cat("Snowy") with Friend

val friend : Friend = snowy

friend.listen

useFriend(snowy)

Here’s the output:

Your friend Snowy is listening

Your friend Snowy is listening

Scala gives you the flexibility to treat all the instances of a class as a

trait or to select only the instances you want. The latter is especially

useful if you want to apply traits to preexisting classes.

7.3 Decorating with Traits

You can use traits to decorate1 objects with capabilities. Assume we

want to run different checks on an applicant—credit, criminal records,

1. See the Decorator pattern in Gamma et al.’s Design Patterns: Elements of Reusable

Object-Oriented Software [GHJV95].

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/TreatCatAsFriend.scala
http://www.pragprog.com/titles/vsscala

DECORATING WITH TRAITS 98

employment, and so on. We’re not interested in all the checks all the

time. An applicant for an apartment may need to be checked for credit

and criminal records. On the other hand, an applicant for employment

may need to be checked for criminal records and previous employ-

ment. If we resort to creating specific classes for these groups of checks,

we’ll end up creating several classes for each permutation of checks we

needed. Furthermore, if we decide to run additional checks, the class

handling that group of checks would have to change. No, we want to

avoid such class proliferation. We can be productive and mix in only

specific checks required for each situation.

Next we’ll introduce an abstract class Check that runs a general check

on the application details:

Download TraitsAndTypeConversions/Decorator.scala

abstract class Check {

def check() : String = "Checked Application Details..."

}

For different types of checks like credit, criminal record, and employ-

ment, we create traits like these:

Download TraitsAndTypeConversions/Decorator.scala

trait CreditCheck extends Check {

override def check() : String = "Checked Credit..." + super.check()

}

trait EmploymentCheck extends Check {

override def check() : String = "Checked Employment..." + super.check()

}

trait CriminalRecordCheck extends Check {

override def check() : String = "Check Criminal Records..." + super.check()

}

We’ve extended these traits from the class Check since we intend to

mix them into only those classes that extend from Check. Extending

the class gives us two capabilities. One, these traits can be mixed in

only with classes that extend Check. Second, we can use the methods

of Check within these traits.

We are interested in enhancing or decorating the implementation of the

method check(), so we have to mark it as override. In our implementa-

tion of check(), we invoke super.check(). Within a trait, calls to method

using super go through late binding. This is not a call on the base class

but instead on the trait mixed in to the left—if this is the leftmost trait

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Decorator.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Decorator.scala
http://www.pragprog.com/titles/vsscala

METHOD LATE BINDING IN TRAITS 99

mixed in, the call resolves to the method on the class into which we

mixed in the trait(s). We’ll see this behavior when we complete this

example.

So, we have one abstract class and three traits in the example so far. We

don’t have any concrete classes—we don’t need any. If we want to run

checks for an apartment application, we can put together an instance

from the previous traits and class:

Download TraitsAndTypeConversions/Decorator.scala

val apartmentApplication = new Check with CreditCheck with CriminalRecordCheck

println(apartmentApplication check)

On the other hand, we could run checks for employment like this:

Download TraitsAndTypeConversions/Decorator.scala

val emplomentApplication = new Check with CriminalRecordCheck with EmploymentCheck

println(emplomentApplication check)

If you’d rather run a different combination of checks, simply mix in

the traits the way you like. The effect of previous two pieces of code is

shown here:

Check Criminal Records...Checked Credit...Checked Application Details...

Checked Employment...Check Criminal Records...Checked Application Details...

The rightmost trait picked up the call to check(). It then, upon the call

to super.check(), passed the call over to the trait on its left. The leftmost

traits invoked the check() on the actual instance.

Traits are a powerful tool in Scala that allow you to mix in crosscut-

ting concerns, and you can use them to create highly extensible code

with low ceremony. Rather than creating a hierarchy of classes and

interfaces, you can put your essential code to quick use.

7.4 Method Late Binding in Traits

In the previous example, the method check() of the Check class was

concrete. Our traits extended from this class. We saw how the call to

super.check() within the traits were bound to either the trait on the left

or the class that mixes in. Things get a bit more complicated if the

method(s) in the base class are abstract. Let’s explore this further here.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Decorator.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Decorator.scala
http://www.pragprog.com/titles/vsscala

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Programming Scala’s Home Page

http://pragprog.com/titles/vsscala

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/vsscala.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/vsscala
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/vsscala
www.pragprog.com/catalog

